Author
Listed:
- Thierry Champel
(Université Grenoble Alpes, CNRS, LPMMC)
- Serge Florens
(Université Grenoble Alpes, CNRS, Institut Néel)
Abstract
Physics of two-dimensional (2D) electron gases under perpendicular magnetic field often displays three distinct stages when increasing the field amplitude: a low field regime with classical magnetotransport, followed at intermediate field by a Shubnikov–de Haas phase where the transport coefficients present quantum oscillations, and, ultimately, the emergence at high field of the quantum Hall effect with perfect quantization of the Hall resistance. A rigorous demonstration of this general paradigm is still limited by the difficulty in solving models of quantum Hall bars with macroscopic lateral dimensions and smooth disorder. We propose here the exact solution of a simple model exhibiting similarly two sharp transitions that are triggered by the competition of cyclotron motion and potential-induced drift. As a function of increasing magnetic field, one observes indeed three distinct phases showing respectively fully broken, partially smeared, or perfect Landau level quantization. This model is based on a non-rotationally invariant, inverted 2D harmonic potential, from which a full quantum solution is obtained using 4D phase space quantization. The developed formalism unifies all three possible regimes under a single analytical theory, as well as arbitrary quadratic potentials, for all magnetic field values. Graphical abstract
Suggested Citation
Thierry Champel & Serge Florens, 2019.
"A solvable model of Landau quantization breakdown,"
The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 92(6), pages 1-9, June.
Handle:
RePEc:spr:eurphb:v:92:y:2019:i:6:d:10.1140_epjb_e2019-100107-7
DOI: 10.1140/epjb/e2019-100107-7
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurphb:v:92:y:2019:i:6:d:10.1140_epjb_e2019-100107-7. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.