IDEAS home Printed from https://ideas.repec.org/a/spr/eurphb/v92y2019i12d10.1140_epjb_e2019-100353-1.html
   My bibliography  Save this article

Ultrascalability and electron transport properties of ultra-thin film phase change material Ge2Sb2Te5

Author

Listed:
  • Ali Roohforouz

    (Kharazmi University)

  • Aliasghar Shokri

    (Payame Noor University (PNU)
    Iran University of Science and Technology)

Abstract

In the present work, we have used ab initio molecular dynamics (AIMD) and non-equilibrium Green’s function (NEGF) formalism to investigate the scaling behavior of electron transport in ultra-thin films of Ge2Sb2Te5 (GST). The relation between the thickness of GST and its electron transport properties are studied in both crystalline (c-GST) and amorphous (a-GST) phases. For thin films with lower than 36 Å thickness, we have observed a dramatic increase in the conductivity of the amorphous phase and an associated reduction in the conductance contrast between the two phases. Metal-induced gap states (MIGS) near the electrodes are observed in the density of states and the transmission coefficient of a-GST. The disappearance of the bandgap of a-GST due to the overlap of MIGS is responsible for the sharp reduction of crystalline to amorphous conductance ratio (ON/OFF). The ON/OFF ratio of the devices is about one order of magnitude upon downscaling the ultra-thin film of the active bit to 36 Å. This estimation is the ultimate scalability for the simulated PCM device. When the thickness of GST further scales down, the reliable read operation is not possible. Our results show very good agreement with experimental work and it seems promising to engineers and designers of ultra-thin PCM devices. Graphical abstract

Suggested Citation

  • Ali Roohforouz & Aliasghar Shokri, 2019. "Ultrascalability and electron transport properties of ultra-thin film phase change material Ge2Sb2Te5," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 92(12), pages 1-7, December.
  • Handle: RePEc:spr:eurphb:v:92:y:2019:i:12:d:10.1140_epjb_e2019-100353-1
    DOI: 10.1140/epjb/e2019-100353-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1140/epjb/e2019-100353-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1140/epjb/e2019-100353-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Keywords

    Mesoscopic and Nanoscale Systems;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurphb:v:92:y:2019:i:12:d:10.1140_epjb_e2019-100353-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.