IDEAS home Printed from https://ideas.repec.org/a/spr/eurphb/v92y2019i11d10.1140_epjb_e2019-100220-7.html
   My bibliography  Save this article

On the response of power law distributions to fluctuations

Author

Listed:
  • Andrea Di Vita

    (Università di Genova)

Abstract

Both in physical and in non-physical systems, the probability of extreme events depends on the slope of the tail of a distribution function. Prediction of this slope is often jeopardized by either poor knowledge of dynamics or statistical uncertainties. In many cases, however, the system attains a relaxed state, and extreme events correspond to large fluctuations near this state. Rather than starting from full (and often unavailable) knowledge of dynamics, we assume that a relaxed state exists and derive a necessary condition for its stability against fluctuations of arbitrary amplitude localized in the tail. In many problems, for suitably chosen variables this tail resembles either an exponential distribution or a power law. We take a q-exponential as a proxy of the tail; its slope depends on the dimensionless parameter q (q = 1 corresponds to an exponential). In turn, q-exponentials describe maxima of the non-extensive entropy Sq, and probabilities of fluctuations near a Sq = max state follow a generalized Einstein’s rule [E. Vives, A. Planes, Phys. Rev. Lett. 88, 020601 (2002)]. This rule provides the desired condition of stability, which allows us to write down a set of rules for semi-anaytical computation of the value qc of q in the relaxed state even with limited knowledge of dynamics. We apply these rules to a problem in econophysics [J.R. Sànchez, R. Lopez-Ruiz, Eur. Phys. J. Special Topics 143, 241 (2007)] and retrieve the main results of numerical solutions, namely the transition of a relaxed distribution of wealth from an exponential to a Pareto-like behaviour in the tail by suitable tuning of the relevant control parameters. A similar discussion holds for the scale parameter of lognormal distributions; we retrieve the results of [Z.N. Wu, J. Li, C.Y. Bai, Entropy 19, 56 (2017)]. Graphical abstract

Suggested Citation

  • Andrea Di Vita, 2019. "On the response of power law distributions to fluctuations," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 92(11), pages 1-18, November.
  • Handle: RePEc:spr:eurphb:v:92:y:2019:i:11:d:10.1140_epjb_e2019-100220-7
    DOI: 10.1140/epjb/e2019-100220-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1140/epjb/e2019-100220-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1140/epjb/e2019-100220-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rytis Kazakevicius & Aleksejus Kononovicius & Bronislovas Kaulakys & Vygintas Gontis, 2021. "Understanding the nature of the long-range memory phenomenon in socioeconomic systems," Papers 2108.02506, arXiv.org, revised Aug 2021.

    More about this item

    Keywords

    Statistical and Nonlinear Physics;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurphb:v:92:y:2019:i:11:d:10.1140_epjb_e2019-100220-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.