Author
Listed:
- Khaled Aledealat
(Physics Department, Jordan University of Science and Technology)
- Abdalla Obeidat
(Physics Department, Jordan University of Science and Technology)
- Maen Gharaibeh
(Physics Department, Jordan University of Science and Technology)
- Adnan Jaradat
(Physics Department, Jordan University of Science and Technology)
- Khitam Khasawinah
(Physics Department, Yarmouk University)
- Mohammad-Khair Hasan
(Physics Department, Jordan University of Science and Technology)
- Akram Rousan
(Physics Department, Jordan University of Science and Technology)
Abstract
In this work, the dynamics of Duffing-Holmes oscillator with fractional order nonlinearity is explored. Basically, a fractional spatial derivative is introduced to the cubic term, and the order of the derivative α is varied between zero and two. The evolution of the dynamics of the system from nonlinear behavior to linear behavior is investigated using multiple tools such as phase portraits, Poincare maps, and bifurcation diagrams. We have demonstrated that as α increases the system can alternate between chaotic and periodic states depending on the parameters setting. However, the overall impact transforms the system into simpler dynamics and eventually causes the chaotic regions to fade out regardless of the system settings. The largest α at which the system still exhibits chaotic behavior is estimated to be around 1.17 and for transient chaos is estimated to be 1.25. Graphical abstract
Suggested Citation
Khaled Aledealat & Abdalla Obeidat & Maen Gharaibeh & Adnan Jaradat & Khitam Khasawinah & Mohammad-Khair Hasan & Akram Rousan, 2019.
"Dynamics of Duffing-Holmes oscillator with fractional order nonlinearity,"
The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 92(10), pages 1-6, October.
Handle:
RePEc:spr:eurphb:v:92:y:2019:i:10:d:10.1140_epjb_e2019-100299-8
DOI: 10.1140/epjb/e2019-100299-8
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurphb:v:92:y:2019:i:10:d:10.1140_epjb_e2019-100299-8. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.