IDEAS home Printed from https://ideas.repec.org/a/spr/eurphb/v91y2018i8d10.1140_epjb_e2018-90127-4.html
   My bibliography  Save this article

Dynamic correlation effects on drag resistivity of a symmetric electron–electron bilayer

Author

Listed:
  • Priya Arora

    (Kurukshetra University)

  • Gurvinder Singh

    (Kurukshetra University
    S. D. College (Lahore))

  • R. K. Moudgil

    (Kurukshetra University)

Abstract

We have studied the effect of dynamic electron correlations on Coulomb drag in a low density symmetric electron–electron bilayer. The drag resistivity is calculated considering the contribution from direct e–e scattering processes using the semi-classical Boltzmann approach, with the effective inter-layer interaction W12(q, ω; T) determined within the Świerkowski, Szymanśki, and Gortel model, generalized to include the dynamics of electron correlations through the frequency-dependent intra- and inter-layer local-field correction (LFC) factors. In turn, the LFCs are obtained by extending the quantum Singwi, Tosi, Land, and Sjölander (qSTLS) approach to finite temperatures. At low temperatures (T ≲ 2 K), the calculated drag resistivity is found to agree nicely with the measurements by Kellogg et al., while it is somewhat overestimated at higher temperatures. The overestimation is seen to increase with decreasing density of electrons. However, there is found to be a marked improvement over the predictions of the conventional (i.e., static) STLS and random-phase approximation (RPA). It turns out that the inclusion of exchange-correlations in the RPA causes a red-shift in the bilayer plasmons which leads to an enhancement of drag resistivity. Our study demonstrates clearly the importance of including the dynamical nature of correlations to have a reasonable account of measured drag resistivity.

Suggested Citation

  • Priya Arora & Gurvinder Singh & R. K. Moudgil, 2018. "Dynamic correlation effects on drag resistivity of a symmetric electron–electron bilayer," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 91(8), pages 1-7, August.
  • Handle: RePEc:spr:eurphb:v:91:y:2018:i:8:d:10.1140_epjb_e2018-90127-4
    DOI: 10.1140/epjb/e2018-90127-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1140/epjb/e2018-90127-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1140/epjb/e2018-90127-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Keywords

    Solid State and Materials;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurphb:v:91:y:2018:i:8:d:10.1140_epjb_e2018-90127-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.