IDEAS home Printed from https://ideas.repec.org/a/spr/eurphb/v91y2018i6d10.1140_epjb_e2018-90004-2.html
   My bibliography  Save this article

Anionic cobalt-platinum-ethynyl (CoPt–C2H) metal-organic subnanoparticles: a DFT modeling study

Author

Listed:
  • Mikail Aslan

    (Department of Metallurgical and Materials Engineering Gaziantep University)

  • Roy L. Johnston

    (School of Chemistry, University of Birmingham)

Abstract

Anionic CoPt-ethynyl metal-organic clusters have been investigated comprehensively. The lowest energetic of anionic Co n Pt m (ethynyl) clusters have been generally found as 3D structure but with low symmetrical point groups. Our results indicate that the most preferred dissociation channel of the studied clusters is Co atom ejection and the favorable dissociation channel is independent of cluster size. The anionic Pt5C2H cluster shows the highest chemical stability according to the HOMO-LUMO Gap analysis. The C2H generally prefers to bind on a bridge site with a few exceptions. The Co4−5 nanoparticles have a lengthening effect on the C≡C bond of the ethynyl molecule, which may be valuable for C≡C bond activation. In addition, the lowest and the highest vibrational frequencies are reported to guide further experimental studies.

Suggested Citation

  • Mikail Aslan & Roy L. Johnston, 2018. "Anionic cobalt-platinum-ethynyl (CoPt–C2H) metal-organic subnanoparticles: a DFT modeling study," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 91(6), pages 1-9, June.
  • Handle: RePEc:spr:eurphb:v:91:y:2018:i:6:d:10.1140_epjb_e2018-90004-2
    DOI: 10.1140/epjb/e2018-90004-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1140/epjb/e2018-90004-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1140/epjb/e2018-90004-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurphb:v:91:y:2018:i:6:d:10.1140_epjb_e2018-90004-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.