IDEAS home Printed from https://ideas.repec.org/a/spr/eurphb/v91y2018i6d10.1140_epjb_e2018-80673-0.html
   My bibliography  Save this article

Density correlations induced by temperature fluctuations in a photon gas

Author

Listed:
  • Roman Tomaschitz

    (Sechsschimmelgasse 1/21-22)

Abstract

The impact of angular temperature variations on the thermodynamic variables and real-space correlation functions of black-body radiation are analyzed. In particular, the effect of temperature fluctuations on the number density and energy density correlations of the cosmic microwave background (CMB) is studied. The angular temperature fluctuations are modeled by an isotropic and homogeneous Gaussian random field, whose autocorrelation function is defined on the unit sphere in momentum space. This temperature correlation function admits an angular Fourier transform which determines the density correlations in real space induced by temperature fluctuations. In the case of the CMB radiation, the multipole coefficients of the angular power spectrum defining the temperature correlation function have been measured by the Planck satellite. The fluctuation-induced perturbation of the equilibrium variables (internal energy, entropy, heat capacity and compressibility) can be quantified in terms of the measured multipole coefficients by expanding the partition function around the equilibrium state in powers of the temperature random field. The real-space density correlations can also be extracted from the measured temperature power spectrum. Both the number density and energy density correlations of the electromagnetic field are long-range, admitting power-law decay; in the case of the energy density correlation, the fluctuation-induced correlation overpowers the isotropic equilibrium correlation in the long-distance limit.

Suggested Citation

  • Roman Tomaschitz, 2018. "Density correlations induced by temperature fluctuations in a photon gas," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 91(6), pages 1-13, June.
  • Handle: RePEc:spr:eurphb:v:91:y:2018:i:6:d:10.1140_epjb_e2018-80673-0
    DOI: 10.1140/epjb/e2018-80673-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1140/epjb/e2018-80673-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1140/epjb/e2018-80673-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Keywords

    Statistical and Nonlinear Physics;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurphb:v:91:y:2018:i:6:d:10.1140_epjb_e2018-80673-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.