IDEAS home Printed from https://ideas.repec.org/a/spr/eurphb/v91y2018i11d10.1140_epjb_e2018-90290-6.html
   My bibliography  Save this article

Molecules with two electronic energy levels: coupling between the molecules in the solid state via the optical and acoustic phonon branches

Author

Listed:
  • Jamil A. Nasser

    (Laboratoire d’Ingénierie des Systèmes de Versailles (LISV), EA 4048, CNRS, Université de Versailles Saint Quentin)

Abstract

In the adiabatic approximation the values of the spring constants of the springs contained in a molecule depend on its electronic state. We consider molecules with two electronic energy levels separated by Δ. For a crystal of such molecules, the phonon branches depend therefore on the electronic states of the molecules. One can ask if that dependence does not introduce a coupling between the molecules via the optical and the acoustic branches. It is known that for a one-dimensional chain of N identical diatomic molecules there are two phonon branches, an optical branch and an acoustic one. In this study we introduce in the hamiltonian of the chain two assumptions: (i) each molecule has two electronic energy levels separated by Δ and the spring constant of the spring contained in the molecule has a value which depends on its electronic state; (ii) the spring constant of the spring which links two molecules nearest neighbours has a value which depends on the electronic states of both molecules linked. One can show that phonons create on each molecule a field-like which favours the excited level and create between two molecules nearest neighbours an exchange-like interaction which can be ferro-like, antiferro-like and which can be equal to zero. For some values of T and Δ, the chain can display a first-order phase transition with the presence of a thermal hysteresis loop. The phase transition takes place between the phase where all the molecules are in the fundamental level and that where they are in the excited one. The parameters of the model can be expressed in function of the applied pressure and of the volume of the crystal.

Suggested Citation

  • Jamil A. Nasser, 2018. "Molecules with two electronic energy levels: coupling between the molecules in the solid state via the optical and acoustic phonon branches," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 91(11), pages 1-12, November.
  • Handle: RePEc:spr:eurphb:v:91:y:2018:i:11:d:10.1140_epjb_e2018-90290-6
    DOI: 10.1140/epjb/e2018-90290-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1140/epjb/e2018-90290-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1140/epjb/e2018-90290-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Keywords

    Solid State and Materials;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurphb:v:91:y:2018:i:11:d:10.1140_epjb_e2018-90290-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.