IDEAS home Printed from https://ideas.repec.org/a/spr/eurphb/v90y2017i7d10.1140_epjb_e2017-80041-8.html
   My bibliography  Save this article

A DFT+U study of the catalytic activity of lanthanum nickelate

Author

Listed:
  • Debolina Misra

    (Indian Institute of Technology Kharagpur)

  • Tarun Kumar Kundu

    (Indian Institute of Technology Kharagpur)

Abstract

A density functional theory + Hubbard U (DFT+U) method is implemented to investigate the catalytic activity of lanthanum nickelate (LaNiO3) for oxygen reduction reaction. Comparison of the surface energies of different LaNiO3 surfaces shows that {001} surface has the lowest surface energy and hence maximum stability. Two possible terminations of the {001} surface namely LaO and NiO2 are considered to carry out all our DFT calculations. Calculation of bond lengths of the atoms near the surface and adsorption energies for the reaction intermediates revealed that LaO terminated {001} surface is unstable for the process of OOH adsorption and hence not preferred for the oxygen reduction reaction. However, NiO2 terminated {001} surface shows excellent catalytic activity for adsorption of all the reaction intermediates and hence is a favourable surface for reactions to occur. Superiority of the NiO2 terminated {001} surface as catalyst over the LaO terminated one, is also confirmed from the total and partial density of states of the surfaces in presence of the adsorbates, which also shows that the desorption rate of the reaction intermediates is low in case of LaO terminated {001} surface compared to the NiO2 terminated one.

Suggested Citation

  • Debolina Misra & Tarun Kumar Kundu, 2017. "A DFT+U study of the catalytic activity of lanthanum nickelate," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 90(7), pages 1-8, July.
  • Handle: RePEc:spr:eurphb:v:90:y:2017:i:7:d:10.1140_epjb_e2017-80041-8
    DOI: 10.1140/epjb/e2017-80041-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1140/epjb/e2017-80041-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1140/epjb/e2017-80041-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Keywords

    Solid State and Materials;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurphb:v:90:y:2017:i:7:d:10.1140_epjb_e2017-80041-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.