IDEAS home Printed from https://ideas.repec.org/a/spr/eurphb/v90y2017i6d10.1140_epjb_e2017-70732-5.html
   My bibliography  Save this article

Von Neumann entropy in a Rashba-Dresselhaus nanodot; dynamical electronic spin-orbit entanglement

Author

Listed:
  • Rosa Safaiee

    (Faculty of Advanced Technologies, Shiraz University)

  • Mohammad Mehdi Golshan

    (Physics Department, College of Sciences, Shiraz University)

Abstract

The main purpose of the present article is to report the characteristics of von Neumann entropy, thereby, the electronic hybrid entanglement, in the heterojunction of two semiconductors, with due attention to the Rashba and Dresselhaus spin-orbit interactions. To this end, we cast the von Neumann entropy in terms of spin polarization and compute its time evolution; with a vast span of applications. It is assumed that gate potentials are applied to the heterojunction, providing a two dimensional parabolic confining potential (forming an isotropic nanodot at the junction), as well as means of controlling the spin-orbit couplings. The spin degeneracy is also removed, even at electronic zero momentum, by the presence of an external magnetic field which, in turn, leads to the appearance of Landau states. We then proceed by computing the time evolution of the corresponding von Neumann entropy from a separable (spin-polarized) initial state. The von Neumann entropy, as we show, indicates that electronic hybrid entanglement does occur between spin and two-dimensional Landau levels. Our results also show that von Neumann entropy, as well as the degree of spin-orbit entanglement, periodically collapses and revives. The characteristics of such behavior; period, amplitude, etc., are shown to be determined from the controllable external agents. Moreover, it is demonstrated that the phenomenon of collapse-revivals’ in the behavior of von Neumann entropy, equivalently, electronic hybrid entanglement, is accompanied by plateaus (of great importance in quantum computation schemes) whose durations are, again, controlled by the external elements. Along these lines, we also make a comparison between effects of the two spin-orbit couplings on the entanglement (von Neumann entropy) characteristics. The finer details of the electronic hybrid entanglement, which may be easily verified through spin polarization measurements, are also accreted and discussed. The novel results of the present article, with potent applications in the field of quantum information processing, provide a deeper understanding of the electronic von Neumann entropy and hybrid entanglement that occurs in two-dimensional nanodots.

Suggested Citation

  • Rosa Safaiee & Mohammad Mehdi Golshan, 2017. "Von Neumann entropy in a Rashba-Dresselhaus nanodot; dynamical electronic spin-orbit entanglement," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 90(6), pages 1-10, June.
  • Handle: RePEc:spr:eurphb:v:90:y:2017:i:6:d:10.1140_epjb_e2017-70732-5
    DOI: 10.1140/epjb/e2017-70732-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1140/epjb/e2017-70732-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1140/epjb/e2017-70732-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Keywords

    Solid State and Materials;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurphb:v:90:y:2017:i:6:d:10.1140_epjb_e2017-70732-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.