IDEAS home Printed from https://ideas.repec.org/a/spr/eurphb/v90y2017i12d10.1140_epjb_e2017-80432-9.html
   My bibliography  Save this article

Asymptotics of work distributions in a stochastically driven system

Author

Listed:
  • Sreekanth K. Manikandan

    (Stockholm University)

  • Supriya Krishnamurthy

    (Stockholm University)

Abstract

We determine the asymptotic forms of work distributions at arbitrary times T, in a class of driven stochastic systems using a theory developed by Nickelsen and Engel (EN theory) [D. Nickelsen and A. Engel, Eur. Phys. J. B 82, 207 (2011)], which is based on the contraction principle of large deviation theory. In this paper, we extend the theory, previously applied in the context of deterministically driven systems, to a model in which the driving is stochastic. The models we study are described by overdamped Langevin equations and the work distributions in path integral form, are characterised by having quadratic augmented actions. We first illustrate EN theory, for a deterministically driven system – the breathing parabola model, and show that within its framework, the Crooks fluctuation theorem manifests itself as a reflection symmetry property of a certain characteristic polynomial, which also determines the exact moment-generating-function at arbitrary times. We then extend our analysis to a stochastically driven system, studied in references [S. Sabhapandit, EPL 89, 60003 (2010); A. Pal, S. Sabhapandit, Phys. Rev. E 87, 022138 (2013); G. Verley, C. Van den Broeck, M. Esposito, New J. Phys. 16, 095001 (2014)], for both equilibrium and non-equilibrium steady state initial distributions. In both cases we obtain new analytic solutions for the asymptotic forms of (dissipated) work distributions at arbitrary T. For dissipated work in the steady state, we compare the large T asymptotic behaviour of our solution to the functional form obtained in reference [New J. Phys. 16, 095001 (2014)]. In all cases, special emphasis is placed on the computation of the pre-exponential factor and the results show excellent agreement with numerical simulations. Our solutions are exact in the low noise (β → ∞) limit.

Suggested Citation

  • Sreekanth K. Manikandan & Supriya Krishnamurthy, 2017. "Asymptotics of work distributions in a stochastically driven system," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 90(12), pages 1-19, December.
  • Handle: RePEc:spr:eurphb:v:90:y:2017:i:12:d:10.1140_epjb_e2017-80432-9
    DOI: 10.1140/epjb/e2017-80432-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1140/epjb/e2017-80432-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1140/epjb/e2017-80432-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Keywords

    Statistical and Nonlinear Physics;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurphb:v:90:y:2017:i:12:d:10.1140_epjb_e2017-80432-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.