IDEAS home Printed from https://ideas.repec.org/a/spr/eurphb/v89y2016i8d10.1140_epjb_e2016-70350-9.html
   My bibliography  Save this article

Time-dependent Mott transition in the periodic Anderson model with nonlocal hybridization

Author

Listed:
  • Felix Hofmann

    (I. Institut für Theoretische Physik, Universität Hamburg)

  • Michael Potthoff

    (I. Institut für Theoretische Physik, Universität Hamburg)

Abstract

The time-dependent Mott transition in a periodic Anderson model with off-site, nearest-neighbor hybridization is studied within the framework of nonequilibrium self-energy functional theory. Using the two-site dynamical-impurity approximation, we compute the real-time dynamics of the optimal variational parameter and of different observables initiated by sudden quenches of the Hubbard-U and identify the critical interaction. The time-dependent transition is orbital selective, i.e., in the final state, reached in the long-time limit after the quench to the critical interaction, the Mott gap opens in the spectral function of the localized orbitals only. We discuss the dependence of the critical interaction and of the final-state effective temperature on the hybridization strength and point out the various similarities between the nonequilibrium and the equilibrium Mott transition. It is shown that these can also be smoothly connected to each other by increasing the duration of a U-ramp from a sudden quench to a quasi-static process. The physics found for the model with off-site hybridization is compared with the dynamical Mott transition in the single-orbital Hubbard model and with the dynamical crossover found for the real-time dynamics of the conventional Anderson lattice with on-site hybridization.

Suggested Citation

  • Felix Hofmann & Michael Potthoff, 2016. "Time-dependent Mott transition in the periodic Anderson model with nonlocal hybridization," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 89(8), pages 1-11, August.
  • Handle: RePEc:spr:eurphb:v:89:y:2016:i:8:d:10.1140_epjb_e2016-70350-9
    DOI: 10.1140/epjb/e2016-70350-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1140/epjb/e2016-70350-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1140/epjb/e2016-70350-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Keywords

    Solid State and Materials;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurphb:v:89:y:2016:i:8:d:10.1140_epjb_e2016-70350-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.