IDEAS home Printed from https://ideas.repec.org/a/spr/eurphb/v89y2016i5d10.1140_epjb_e2016-70065-y.html
   My bibliography  Save this article

Ab initio calculations of optical properties of silver clusters: cross-over from molecular to nanoscale behavior

Author

Listed:
  • John T. Titantah

    (Eindhoven University of Technology)

  • Mikko Karttunen

    (Eindhoven University of Technology)

Abstract

Electronic and optical properties of silver clusters were calculated using two different ab initio approaches: (1) based on all-electron full-potential linearized-augmented plane-wave method and (2) local basis function pseudopotential approach. Agreement is found between the two methods for small and intermediate sized clusters for which the former method is limited due to its all-electron formulation. The latter, due to non-periodic boundary conditions, is the more natural approach to simulate small clusters. The effect of cluster size is then explored using the local basis function approach. We find that as the cluster size increases, the electronic structure undergoes a transition from molecular behavior to nanoparticle behavior at a cluster size of 140 atoms (diameter ~1.7 nm). Above this cluster size the step-like electronic structure, evident as several features in the imaginary part of the polarizability of all clusters smaller than Ag147, gives way to a dominant plasmon peak localized at wavelengths 350 nm ≤ λ ≤ 600 nm. It is, thus, at this length-scale that the conduction electrons’ collective oscillations that are responsible for plasmonic resonances begin to dominate the opto-electronic properties of silver nanoclusters.

Suggested Citation

  • John T. Titantah & Mikko Karttunen, 2016. "Ab initio calculations of optical properties of silver clusters: cross-over from molecular to nanoscale behavior," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 89(5), pages 1-6, May.
  • Handle: RePEc:spr:eurphb:v:89:y:2016:i:5:d:10.1140_epjb_e2016-70065-y
    DOI: 10.1140/epjb/e2016-70065-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1140/epjb/e2016-70065-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1140/epjb/e2016-70065-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Keywords

    Mesoscopic and Nanoscale Systems;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurphb:v:89:y:2016:i:5:d:10.1140_epjb_e2016-70065-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.