IDEAS home Printed from https://ideas.repec.org/a/spr/eurphb/v89y2016i11d10.1140_epjb_e2016-70110-y.html
   My bibliography  Save this article

Time-dependent density functional theory for charge-transfer dynamics: review of the causes of failure and success

Author

Listed:
  • Johanna I. Fuks

    (Hunter College and the Graduate Center of the City University of New York)

Abstract

The present study is an effort to unveil and characterize the failure and success of real-time Time-dependent density functional theory simulated charge transfer dynamics. To this aim, we study two distinct examples found in the literature: a dramatic failure is reported in [S. Raghunathan, M. Nest, J. Chem. Theor. Comput. 7, 2492 (2011)] whereas in [C.A. Rozzi et al., Nat. Commun. 4, 1602 (2013)] the simulations show good agreement with experiments. We find that the choice of Single Slater Determinant for the Kohn Sham initial state renders the simulation of charge transfer dynamics starting in the ground state very challenging. In contrast, starting the simulation in a photo-excited state facilitates the description and we show that even a simple functional can perform well. We formulate exact conditions to be satisfied by the exchange-correlation functional in order to keep the resonances of the system constant and relate the degree of their violation to the performance of a given functional approximation. We show that even the best possible ground state approximation to the exchange-correlation density functional violates the exact conditions, resulting in inaccurate dynamics.

Suggested Citation

  • Johanna I. Fuks, 2016. "Time-dependent density functional theory for charge-transfer dynamics: review of the causes of failure and success," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 89(11), pages 1-19, November.
  • Handle: RePEc:spr:eurphb:v:89:y:2016:i:11:d:10.1140_epjb_e2016-70110-y
    DOI: 10.1140/epjb/e2016-70110-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1140/epjb/e2016-70110-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1140/epjb/e2016-70110-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurphb:v:89:y:2016:i:11:d:10.1140_epjb_e2016-70110-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.