IDEAS home Printed from https://ideas.repec.org/a/spr/eurphb/v60y2007i2p225-229.html
   My bibliography  Save this article

Synchronization, zero-resistance states and rotating Wigner crystal

Author

Listed:
  • A. D. Chepelianskii
  • A. S. Pikovsky
  • D. L. Shepelyansky

Abstract

We show, in a framework of a classical nonequilibrium model, that rotational angles of electrons moving in two dimensions (2D) in a perpendicular magnetic field can be synchronized by an external microwave field whose frequency is close to the Larmor frequency. The synchronization eliminates collisions between electrons and thus creates a regime with zero diffusion corresponding to the zero-resistance states observed in experiments with high mobility 2D electron gas (2DEG). For long range Coulomb interactions electrons form a rotating hexagonal Wigner crystal. Possible relevance of this effect of synchronization-induced self-assembly for planetary rings is discussed. Copyright EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2007

Suggested Citation

  • A. D. Chepelianskii & A. S. Pikovsky & D. L. Shepelyansky, 2007. "Synchronization, zero-resistance states and rotating Wigner crystal," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 60(2), pages 225-229, November.
  • Handle: RePEc:spr:eurphb:v:60:y:2007:i:2:p:225-229
    DOI: 10.1140/epjb/e2007-00341-x
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1140/epjb/e2007-00341-x
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1140/epjb/e2007-00341-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurphb:v:60:y:2007:i:2:p:225-229. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.