IDEAS home Printed from https://ideas.repec.org/a/spr/eurphb/v49y2006i4p471-481.html
   My bibliography  Save this article

A LES-Langevin model for turbulence

Author

Listed:
  • J.-P. Laval
  • B. Dubrulle

Abstract

We propose a new model of turbulence for use in large-eddy simulations (LES). The turbulent force, represented here by the turbulent Lamb vector, is divided in two contributions. The contribution including only subfilter fields is deterministically modeled through a classical eddy-viscosity. The other contribution including both filtered and subfilter scales is dynamically computed as solution of a generalized (stochastic) Langevin equation. This equation is derived using Rapid Distortion Theory (RDT) applied to the subfilter scales. The general friction operator therefore includes both advection and stretching by the resolved scale. The stochastic noise is derived as the sum of a contribution from the energy cascade and a contribution from the pressure. The LES model is thus made of an equation for the resolved scales, including the turbulent force, and a generalized Langevin equation integrated on a twice-finer grid. We compare the full model with several approximations. In the first one, the friction operator of the Langevin equation is simply replaced by an empirical constant, of the order of the resolved scale correlation time. In the second approximation, the integration is replaced by a condition of instantaneous adjustment to the stochastic force. In this approximation, our model becomes equivalent to the velocity-estimation model of Domaradzki et al. [1-3]. In the isotropic, homogeneous situations we study, both approximations provide satisfactory results, at a reduced computational cost. The model is finally validated by comparison to DNS and is tested against classical LES models for isotropic homogeneous turbulence, based on eddy viscosity. We show that even in this situation, where no walls are present, our inclusion of backscatter through the Langevin equation results in a better description of the flow. Copyright EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2006

Suggested Citation

  • J.-P. Laval & B. Dubrulle, 2006. "A LES-Langevin model for turbulence," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 49(4), pages 471-481, February.
  • Handle: RePEc:spr:eurphb:v:49:y:2006:i:4:p:471-481
    DOI: 10.1140/epjb/e2006-00082-4
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1140/epjb/e2006-00082-4
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1140/epjb/e2006-00082-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurphb:v:49:y:2006:i:4:p:471-481. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.