IDEAS home Printed from https://ideas.repec.org/a/spr/eurphb/v49y2006i1p5-23.html
   My bibliography  Save this article

The conductivity properties of protons in ice and mechanism of magnetization of liquid water

Author

Listed:
  • X. F. Pang

Abstract

From a study of electrical conductivity of protons in the hydrogen-bonded chains in ice we confirm that the magnetization of liquid water is caused by proton transfer in closed hydrogen-bonded chains occurring as a first order phase transition, through which the ice becomes liquid water. We first study the conductive properties of proton transfer along molecular chains in ice crystals in our model. Ice is a typical hydrogen-bonded molecular system, in which the interaction of localized fluctuation of hydrogen ions (H + ) with deformation of a structure of hydroxyl group (OH) results in soliton motion of the protons along the molecular chains via ionic and bonded defects. We explain further the quantum conductive properties of proton transfer and determine its mobility and conductivity under constant electric-field using a new theory of proton transfer, which agree with experimental values. From features of first order phase-transition for ice, and some experimental data of pure and magnetized water we confirm further that there are not only free water molecules, but also many linear and closed hydrogen-bonded chains consisting of many polarized water-molecules in the liquid water. Thus a ring proton-current, which resembles to a “molecular current” or a “small magnet” in solids, can occur in the closed hydrogen-bond chains under action of an externally applied magnetic field. Then the water molecules in the closed chains can be orderly arrayed due to the magnetic interaction among these ring proton currents and the externally applied magnetic field. This is just the magnetized effect of the water. In such a case the optical and electronic properties of the water, including the dielectric constant, magnetoconductivity, refraction index, Raman and Infrared absorption spectra, are changed. We determine experimentally the properties of the magnetized water which agree with the theoretical results of our model. However, the magnetized effect of water is, in general, very small, and vanishes at temperatures above 100 ○ C. Copyright EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2006

Suggested Citation

  • X. F. Pang, 2006. "The conductivity properties of protons in ice and mechanism of magnetization of liquid water," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 49(1), pages 5-23, January.
  • Handle: RePEc:spr:eurphb:v:49:y:2006:i:1:p:5-23
    DOI: 10.1140/epjb/e2006-00020-6
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1140/epjb/e2006-00020-6
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1140/epjb/e2006-00020-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurphb:v:49:y:2006:i:1:p:5-23. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.