IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Exploring valleys of aging systems: the spin glass case

Listed author(s):
  • J. Dall


  • P. Sibani
Registered author(s):

    We present a statistical method for complex energy landscape exploration which provides information on the metastable states--or valleys--actually explored by an unperturbed aging process following a quench. Energy fluctuations of record size are identified as the events which move the system from one valley to the next. This allows for a semi-analytical description in terms of log-Poisson statistics, whose main features are briefly explained. The bulk of the paper is devoted to thorough investigations of Ising spin glasses with Gaussian interactions of both short and long range, a well established paradigm for glassy dynamics. Simple scaling expressions with universal exponents for (a) barrier energies, (b) energy minima, and (c) the Hamming distance as a function of the valley index are found. The distribution of residence time inside valleys entered at age t w is investigated, along with the distribution of time at which the global minimum inside a valley is hit. Finally, the correlations between the minima of the landscape are presented. The results fit well into the framework of available knowledge about spin glass aging. At the same time they support a novel interpretation of thermal relaxation in complex landscapes with multiple metastable states. The marginal stability of the attractors selected is emphasized and explained in terms of geometrical properties of the landscape. Copyright Springer-Verlag Berlin/Heidelberg 2003

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Springer & EDP Sciences in its journal The European Physical Journal B - Condensed Matter and Complex Systems.

    Volume (Year): 36 (2003)
    Issue (Month): 2 (November)
    Pages: 233-243

    in new window

    Handle: RePEc:spr:eurphb:v:36:y:2003:i:2:p:233-243
    DOI: 10.1140/epjb/e2003-00340-y
    Contact details of provider: Web page:

    Web page:

    Order Information: Web:

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:spr:eurphb:v:36:y:2003:i:2:p:233-243. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla)

    or (Rebekah McClure)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.