IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Phase behavior and collective excitations of the Morse ring chain

Listed author(s):
  • A. Chetverikov
  • J. Dunkel


Registered author(s):

    Using primarily numerical methods we study clustering processes and collective excitations in a one-dimensional ring chain. The ring chain is constituted by N identical point particles with next neighbors interacting via nonlinear Morse springs. If the system is coupled to a heat bath (Gaussian white noise and viscous friction), then depending on the particle density and the bath temperature different phase-like states can be distinguished. This will be illustrated by means of numerically calculated phase diagrams. In order to identify collective excitations activated by the heat bath we calculate the spectrum of the normalized dynamical structure factor (SDF). Our numerical results show that the transition regions between different phase-like states are typically characterized by a 1/f-type SDF spectrum, reflecting the fact that near critical points correlations on all length and time scales become important. In the last part of the paper we also discuss a non-equilibrium effect, which occurs if an additional nonlinearly velocity-dependent force is included in the equations of motions. In particular it will be shown that such additional dissipative effects may stabilize cluster configurations. Copyright Springer-Verlag Berlin/Heidelberg 2003

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Springer & EDP Sciences in its journal The European Physical Journal B - Condensed Matter and Complex Systems.

    Volume (Year): 35 (2003)
    Issue (Month): 2 (September)
    Pages: 239-253

    in new window

    Handle: RePEc:spr:eurphb:v:35:y:2003:i:2:p:239-253
    DOI: 10.1140/epjb/e2003-00274-4
    Contact details of provider: Web page:

    Web page:

    Order Information: Web:

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:spr:eurphb:v:35:y:2003:i:2:p:239-253. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla)

    or (Rebekah McClure)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.