IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Theory and simulation of positionally frozen Heisenberg spin systems

Listed author(s):
  • E. Lomba


  • C. Martín
  • N. Almarza
Registered author(s):

    The structure, thermodynamics and the ferromagnetic phase transition of a positionally frozen disordered Heisenberg spin system are studied by means of extensive Monte Carlo calculations in combination with finite size scaling techniques, as well as resorting to the Replica Ornstein-Zernike formalism. The system is formed by a collection of Heisenberg spins whose spatial distribution corresponds to a soft sphere fluid with its particle positions frozen at a certain quench temperature. The spin orientations are allowed to equilibrate at a given equilibrium temperature. If the quench and equilibrium temperatures are similar the properties of the positionally frozen system are practically indistinguishable from those of the fully equilibrated Heisenberg spin fluid. On the other hand, one observes that as the quenching temperature of the spatial degrees of freedom increases, so does the Curie temperature of the Heisenberg spins. The theory fails to reproduce the location of the ferromagnetic transition, despite its relative accuracy in the determination of the orientational structure in the supercritical region. Copyright Springer-Verlag Berlin/Heidelberg 2003

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Springer & EDP Sciences in its journal The European Physical Journal B - Condensed Matter and Complex Systems.

    Volume (Year): 34 (2003)
    Issue (Month): 4 (August)
    Pages: 473-478

    in new window

    Handle: RePEc:spr:eurphb:v:34:y:2003:i:4:p:473-478
    DOI: 10.1140/epjb/e2003-00246-8
    Contact details of provider: Web page:

    Web page:

    Order Information: Web:

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:spr:eurphb:v:34:y:2003:i:4:p:473-478. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla)

    or (Rebekah McClure)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.