IDEAS home Printed from
   My bibliography  Save this article

Statistical approach of the modulational instability of the discrete self-trapping equation


  • A. Visinescu


  • D. Grecu


The discrete self-trapping equation (DST) represents an useful model for several properties of one-dimensional nonlinear molecular crystals. The modulational instability of DST equation is discussed from a statistical point of view, considering the oscillator amplitude as a random variable. A kinetic equation for the two-point correlation function is written down, and its linear stability is studied. Both a Gaussian and a Lorentzian form for the initial unperturbed wave spectrum are discussed. Comparison with the continuum limit (NLS equation) is carried out. Copyright Springer-Verlag Berlin/Heidelberg 2003

Suggested Citation

  • A. Visinescu & D. Grecu, 2003. "Statistical approach of the modulational instability of the discrete self-trapping equation," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 34(2), pages 225-229, July.
  • Handle: RePEc:spr:eurphb:v:34:y:2003:i:2:p:225-229
    DOI: 10.1140/epjb/e2003-00215-3

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurphb:v:34:y:2003:i:2:p:225-229. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.