IDEAS home Printed from https://ideas.repec.org/a/spr/envsyd/v45y2025i3d10.1007_s10669-025-10040-3.html
   My bibliography  Save this article

Enhancing resilience of low-inertia power systems through a novel load shedding method with synchronous condenser power control

Author

Listed:
  • Antans Sauhats

    (Riga Technical University, Faculty of Computer Science, Information Technology and Energy)

  • Diana Zalostiba

    (Riga Technical University, Faculty of Computer Science, Information Technology and Energy)

  • Andrejs Utans

    (Riga Technical University, Faculty of Computer Science, Information Technology and Energy)

  • Romans Petricenko

    (Riga Technical University, Faculty of Computer Science, Information Technology and Energy)

Abstract

This study explores the challenges posed by the transition to large-scale deployment of renewable energy sources, which lead to a significant reduction in the inertia of power systems. It focuses on enhancing resilience and frequency stability in response to sudden disturbances, such as generator failures or transmission line disconnections. The paper critically evaluates the limitations of conventional under-frequency load shedding (UFLS) methods and advances a novel Rapid Load Shedding (RLS) approach. The RLS method harnesses the active power response of synchronous condensers (SCs) to enable faster load shedding, thereby improving system stability and addressing operational constraints from a reliability perspective. The study demonstrates the feasibility of implementing new control systems using the proposed structure of a special protection scheme. It also examines the economic benefits of enhancing the allowable transfer capacity in the Baltic Power System (BPS) through this method. The findings highlight how the RLS approach can enable higher transfer capacities whilst maintaining system resilience. Additionally, the results indicate that the RLS method can significantly mitigate frequency deviations and enhance system stability, offering a promising solution for low-inertia power systems with high levels of renewable energy integration.

Suggested Citation

  • Antans Sauhats & Diana Zalostiba & Andrejs Utans & Romans Petricenko, 2025. "Enhancing resilience of low-inertia power systems through a novel load shedding method with synchronous condenser power control," Environment Systems and Decisions, Springer, vol. 45(3), pages 1-13, September.
  • Handle: RePEc:spr:envsyd:v:45:y:2025:i:3:d:10.1007_s10669-025-10040-3
    DOI: 10.1007/s10669-025-10040-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10669-025-10040-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10669-025-10040-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Antans Sauhats & Andrejs Utāns & Diāna Žalostība, 2024. "Leveraging Pumped Storage Power Plants for Innovative Stability Enhancement of Weakly Interconnected Power Systems," Energies, MDPI, vol. 17(15), pages 1-25, July.
    2. Johnson, Samuel C. & Rhodes, Joshua D. & Webber, Michael E., 2020. "Understanding the impact of non-synchronous wind and solar generation on grid stability and identifying mitigation pathways," Applied Energy, Elsevier, vol. 262(C).
    3. Antans Sauhats & Andrejs Utans & Jurijs Silinevics & Gatis Junghans & Dmitrijs Guzs, 2021. "Enhancing Power System Frequency with a Novel Load Shedding Method Including Monitoring of Synchronous Condensers’ Power Injections," Energies, MDPI, vol. 14(5), pages 1-21, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Garcet, J. & De Meulenaere, R. & Blondeau, J., 2022. "Enabling flexible CHP operation for grid support by exploiting the DHN thermal inertia," Applied Energy, Elsevier, vol. 316(C).
    2. Park, Joungho & Kang, Sungho & Kim, Sunwoo & Kim, Hana & Kim, Sang-Kyung & Lee, Jay H., 2024. "Optimizing green hydrogen systems: Balancing economic viability and reliability in the face of supply-demand volatility," Applied Energy, Elsevier, vol. 368(C).
    3. Zhang, Tengxi & Xin, Li & Wang, Shunjiang & Guo, Ren & Wang, Wentao & Cui, Jia & Wang, Peng, 2024. "A novel approach of energy and reserve scheduling for hybrid power systems: Frequency security constraints," Applied Energy, Elsevier, vol. 361(C).
    4. Ivo Leandro Dorileo & Welson Bassi & Danilo Ferreira de Souza, 2025. "Nuclear Power Plants as Equivalents of Hydroelectric Reservoirs and Providers of Grid Stability: The Case of the Brazilian Electrical System," Energies, MDPI, vol. 18(14), pages 1-24, July.
    5. Gorman, Nicholas & MacGill, Iain & Bruce, Anna, 2024. "Re-dispatch simplification analysis: Confirmation holism and assessing the impact of simplifications on energy system model performance," Applied Energy, Elsevier, vol. 365(C).
    6. Gian Paramo & Arturo Bretas, 2023. "Proactive Frequency Stability Scheme: A Distributed Framework Based on Particle Filters and Synchrophasors," Energies, MDPI, vol. 16(11), pages 1-19, June.
    7. Makolo, Peter & Zamora, Ramon & Lie, Tek-Tjing, 2021. "The role of inertia for grid flexibility under high penetration of variable renewables - A review of challenges and solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    8. Mohamed Hadri & Vincenzo Trovato & Agnes Bialecki & Bruno Merk & Aiden Peakman, 2021. "Assessment of High-Electrification UK Scenarios with Varying Levels of Nuclear Power and Associated Post-Fault Behaviour," Energies, MDPI, vol. 14(6), pages 1-23, March.
    9. María Teresa Villén & Maria Paz Comech & Eduardo Martinez Carrasco & Aníbal Antonio Prada Hurtado, 2022. "Influence of Negative Sequence Injection Strategies on Faulted Phase Selector Performance," Energies, MDPI, vol. 15(16), pages 1-19, August.
    10. Cardo-Miota, Javier & Beltran, Hector & Pérez, Emilio & Khadem, Shafi & Bahloul, Mohamed, 2025. "Deep reinforcement learning-based strategy for maximizing returns from renewable energy and energy storage systems in multi-electricity markets," Applied Energy, Elsevier, vol. 388(C).
    11. Yohan Jang & Zhuoya Sun & Sanghyuk Ji & Chaeeun Lee & Daeung Jeong & Seunghoon Choung & Sungwoo Bae, 2021. "Grid-Connected Inverter for a PV-Powered Electric Vehicle Charging Station to Enhance the Stability of a Microgrid," Sustainability, MDPI, vol. 13(24), pages 1-16, December.
    12. Kangkang Huang & Yanlai Zhou & Yadong Mei & Fi-John Chang & Chong-Yu Xu, 2025. "Boosting Efficiency: Optimizing Pumped-Storage Power Station Operation by a Mixed Integer Linear Programming Approach," Energies, MDPI, vol. 18(18), pages 1-25, September.
    13. Yang, Zhiwei & Khatri, Dishant & Verma, Piyush & Li, Tianxiang & Adeosun, Adewale & Kumfer, Benjamin M. & Axelbaum, Richard L., 2021. "Experimental study and demonstration of pilot-scale, dry feed, oxy-coal combustion under pressure," Applied Energy, Elsevier, vol. 285(C).
    14. Antans Sauhats & Andrejs Utāns & Diāna Žalostība, 2024. "Leveraging Pumped Storage Power Plants for Innovative Stability Enhancement of Weakly Interconnected Power Systems," Energies, MDPI, vol. 17(15), pages 1-25, July.
    15. Ren, Haoshan & Sun, Yongjun & Albdoor, Ahmed K. & Tyagi, V.V. & Pandey, A.K. & Ma, Zhenjun, 2021. "Improving energy flexibility of a net-zero energy house using a solar-assisted air conditioning system with thermal energy storage and demand-side management," Applied Energy, Elsevier, vol. 285(C).
    16. Cheng, Yi & Azizipanah-Abarghooee, Rasoul & Azizi, Sadegh & Ding, Lei & Terzija, Vladimir, 2020. "Smart frequency control in low inertia energy systems based on frequency response techniques: A review," Applied Energy, Elsevier, vol. 279(C).
    17. Homan, Samuel & Mac Dowell, Niall & Brown, Solomon, 2021. "Grid frequency volatility in future low inertia scenarios: Challenges and mitigation options," Applied Energy, Elsevier, vol. 290(C).
    18. Tina, Giuseppe Marco & Aneli, Stefano & Gagliano, Antonio, 2022. "Technical and economic analysis of the provision of ancillary services through the flexibility of HVAC system in shopping centers," Energy, Elsevier, vol. 258(C).
    19. Pampa Sinha & Kaushik Paul & Sanchari Deb & Sulabh Sachan, 2023. "Comprehensive Review Based on the Impact of Integrating Electric Vehicle and Renewable Energy Sources to the Grid," Energies, MDPI, vol. 16(6), pages 1-39, March.
    20. Groissböck, Markus & Gusmão, Alexandre, 2020. "Impact of renewable resource quality on security of supply with high shares of renewable energies," Applied Energy, Elsevier, vol. 277(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:envsyd:v:45:y:2025:i:3:d:10.1007_s10669-025-10040-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.