IDEAS home Printed from https://ideas.repec.org/a/spr/envsyd/v45y2025i3d10.1007_s10669-025-10029-y.html
   My bibliography  Save this article

Integer programming based on spherical fuzzy AHP and spherical fuzzy TOPSIS for wildfire equipment planning

Author

Listed:
  • Burcu Tezcan

    (Cappadocia University)

  • Tamer Eren

    (Kırıkkale University)

Abstract

Forest fires can occur due to various factors and spread rapidly, posing a significant environmental threat. In particular, 12 million hectares of land in the Aegean and Mediterranean regions are at risk. Risk areas refer to locations where fires can easily ignite and quickly propagate to surrounding zones. This study aims to identify high-risk forest fire areas in Muğla province and to develop a strategic resource allocation plan. Muğla, known for its biodiversity and tourism potential, includes 13 districts considered as alternatives in the analysis. Due to the inherent uncertainty in fire risk assessment, fuzzy set theory was employed. Four main criteria and 14 sub-criteria influencing fire probability were evaluated using the Global Fuzzy AHP method. According to the results, aspect emerged as the most significant factor with a weight of 0.112, followed by humidity at 0.098. These weights were then used to rank the districts via the Global Fuzzy TOPSIS method. Sensitivity analysis was conducted to validate the ranking, with Datça identified as the highest-risk district. Comparative analysis was performed using FAHP and FTOPSIS methods. Once potential fire zones in Datça were identified, an optimal resource allocation model was developed using integer linear programming. The model considers fire spread rate, priority levels, equipment availability, and response time. This study presents a comprehensive approach that integrates fuzzy-based risk analysis and optimization techniques for effective fire management.

Suggested Citation

  • Burcu Tezcan & Tamer Eren, 2025. "Integer programming based on spherical fuzzy AHP and spherical fuzzy TOPSIS for wildfire equipment planning," Environment Systems and Decisions, Springer, vol. 45(3), pages 1-26, September.
  • Handle: RePEc:spr:envsyd:v:45:y:2025:i:3:d:10.1007_s10669-025-10029-y
    DOI: 10.1007/s10669-025-10029-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10669-025-10029-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10669-025-10029-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Avci, Mualla Gonca & Avci, Mustafa & Battarra, Maria & Erdoğan, Güneş, 2024. "The wildfire suppression problem with multiple types of resources," European Journal of Operational Research, Elsevier, vol. 316(2), pages 488-502.
    2. Narissara Nuthammachot & Dimitris Stratoulias, 2021. "Multi-criteria decision analysis for forest fire risk assessment by coupling AHP and GIS: method and case study," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(12), pages 17443-17458, December.
    3. İzzet Ersoy & Emre Ünsal & Önder Gürsoy, 2025. "A Multi-Criteria Forest Fire Danger Assessment System on GIS Using Literature-Based Model and Analytical Hierarchy Process Model for Mediterranean Coast of Manavgat, Türkiye," Sustainability, MDPI, vol. 17(5), pages 1-27, February.
    4. Bibiana Granda & Begoña Vitoriano & José Rui Figueira, 2025. "A mathematical programming approach for a wildfire suppression problem," Operational Research, Springer, vol. 25(1), pages 1-27, March.
    5. João António Zeferino, 2020. "Optimizing the location of aerial resources to combat wildfires: a case study of Portugal," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 100(3), pages 1195-1213, February.
    6. Hassan Abedi Gheshlaghi & Bakhtiar Feizizadeh & Thomas Blaschke, 2020. "GIS-based forest fire risk mapping using the analytical network process and fuzzy logic," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 63(3), pages 481-499, February.
    7. Hazem Ghassan Abdo & Hussein Almohamad & Ahmed Abdullah Al Dughairi & Motirh Al-Mutiry, 2022. "GIS-Based Frequency Ratio and Analytic Hierarchy Process for Forest Fire Susceptibility Mapping in the Western Region of Syria," Sustainability, MDPI, vol. 14(8), pages 1-20, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Burcu Tezcan & Tamer Eren, 2025. "Forest fire management and fire suppression strategies: a systematic literature review," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 121(9), pages 10485-10515, May.
    2. Tamali Mondal & Soumya Dasgupta & Dinesh Chandra Bhatt & K. Ramesh, 2024. "Natural or man-made? Finding the drivers of forest fires within the protected area habitats: a case study from the lower Shivalik Landscape, Western Himalaya," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(8), pages 7765-7785, June.
    3. Zühal Özcan & İnci Caglayan & Özgür Kabak & Fatmagül Kılıç Gül, 2025. "Integrated risk mapping for forest fire management using the analytical hierarchy process and ordered weighted average: a case study in southern Turkey," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 121(1), pages 959-1001, January.
    4. Hongrui Wen & Qiaozhen Guo & Yuhuai Zeng & Zepeng Wu & Zhenhui Sun, 2022. "Study on forest fire risk in Conghua district of Guangzhou city based on multi-source data," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(3), pages 3163-3183, December.
    5. Bibiana Granda & Begoña Vitoriano & José Rui Figueira, 2025. "A mathematical programming approach for a wildfire suppression problem," Operational Research, Springer, vol. 25(1), pages 1-27, March.
    6. Yinyuan Zhang & Hui Ci & Hui Yang & Ran Wang & Zhaojin Yan, 2025. "Rainfall-Induced Geological Hazard Susceptibility Assessment in the Henan Section of the Yellow River Basin: Multi-Model Approaches Supporting Disaster Mitigation and Sustainable Development," Sustainability, MDPI, vol. 17(10), pages 1-22, May.
    7. Zekeriya Konurhan & Melih Yucesan & Muhammet Gul, 2025. "Investigating forest fire causes through an integrated Bayesian network and geographic information system approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 121(11), pages 12933-12958, June.
    8. Guohua Chen & Qin Yang & Xuexi Chen & Kongxing Huang & Tao Zeng & Zhi Yuan, 2021. "Methodology of Urban Safety and Security Assessment Based on the Overall Risk Management Perspective," Sustainability, MDPI, vol. 13(12), pages 1-26, June.
    9. Mohsen Alawi & Dongzhu Chu & Seba Hammad, 2023. "Resilience of Public Open Spaces to Earthquakes: A Case Study of Chongqing, China," Sustainability, MDPI, vol. 15(2), pages 1-20, January.
    10. Hazem Ghassan Abdo & Hussein Almohamad & Ahmed Abdullah Al Dughairi & Motirh Al-Mutiry, 2022. "GIS-Based Frequency Ratio and Analytic Hierarchy Process for Forest Fire Susceptibility Mapping in the Western Region of Syria," Sustainability, MDPI, vol. 14(8), pages 1-20, April.
    11. Rahim Tavakolifar & Himan Shahabi & Mohsen Alizadeh & Sayed M. Bateni & Mazlan Hashim & Ataollah Shirzadi & Effi Helmy Ariffin & Isabelle D. Wolf & Saman Shojae Chaeikar, 2023. "Spatial Prediction of Landslides Using Hybrid Multi-Criteria Decision-Making Methods: A Case Study of the Saqqez-Marivan Mountain Road in Iran," Land, MDPI, vol. 12(6), pages 1-19, May.
    12. Prija Djatmika & Prischa Listiningrum & Theresia B. Sumarno & Dararida F. Mahira & Corinthias P. M. Sianipar, 2023. "Just Transition in Biofuel Development towards Low-Carbon Economy: Multi-Actor Perspectives on Policies and Practices in Indonesia," Energies, MDPI, vol. 17(1), pages 1-29, December.
    13. Shu Wu, 2021. "RETRACTED: The Temporal-Spatial Distribution and Information-Diffusion-Based Risk Assessment of Forest Fires in China," Sustainability, MDPI, vol. 13(24), pages 1-18, December.
    14. Viktor Sköld Gustafsson & Tobias Andersson Granberg & Sofie Pilemalm & Martin Waldemarsson, 2024. "Identifying decision support needs for emergency response to multiple natural hazards: an activity theory approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(3), pages 2777-2802, February.
    15. Daniel Suarez & Camilo Gomez & Andrés L. Medaglia & Raha Akhavan-Tabatabaei & Sthefania Grajales, 2024. "Integrated Decision Support for Disaster Risk Management: Aiding Preparedness and Response Decisions in Wildfire Management," Information Systems Research, INFORMS, vol. 35(2), pages 609-628, June.
    16. Abdulwaheed Tella & Abdul-Lateef Balogun, 2020. "Ensemble fuzzy MCDM for spatial assessment of flood susceptibility in Ibadan, Nigeria," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(3), pages 2277-2306, December.
    17. Samereh Pourmoradian & Ali Vandshoari & Davoud Omarzadeh & Ayyoob Sharifi & Naser Sanobuar & Seyyed Samad Hosseini, 2021. "An Integrated Approach to Assess Potential and Sustainability of Handmade Carpet Production in Different Areas of the East Azerbaijan Province of Iran," Sustainability, MDPI, vol. 13(4), pages 1-21, February.
    18. Bijay Halder & Papiya Banik & Hussein Almohamad & Ahmed Abdullah Al Dughairi & Motrih Al-Mutiry & Haya Falah Al Shahrani & Hazem Ghassan Abdo, 2022. "Land Suitability Investigation for Solar Power Plant Using GIS, AHP and Multi-Criteria Decision Approach: A Case of Megacity Kolkata, West Bengal, India," Sustainability, MDPI, vol. 14(18), pages 1-21, September.
    19. Parviz Mohamadzadeh & Samereh Pourmoradian & Bakhtiar Feizizadeh & Ayyoob Sharifi & Mathias Vogdrup-Schmidt, 2020. "A GIS-Based Approach for Spatially-Explicit Sustainable Development Assessments in East Azerbaijan Province, Iran," Sustainability, MDPI, vol. 12(24), pages 1-16, December.
    20. Mohsen Alawi & Dongzhu Chu, 2025. "Assessing and enhancing public space resilience to pandemics and earthquakes: a case study of Chongqing, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 121(2), pages 2023-2052, January.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:envsyd:v:45:y:2025:i:3:d:10.1007_s10669-025-10029-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.