IDEAS home Printed from https://ideas.repec.org/a/spr/envsyd/v45y2025i2d10.1007_s10669-025-10011-8.html
   My bibliography  Save this article

Exploring awareness, implementation, and future use of urine diversion systems in U.S. university buildings

Author

Listed:
  • Khara Grieger

    (North Carolina State University
    North Carolina State University
    Science and Technologies for Phosphorus Sustainability (STEPS) Center)

  • Matt Scholz

    (Science and Technologies for Phosphorus Sustainability (STEPS) Center
    Arizona State University)

  • Christopher L. Cummings

    (United States Army Corps of Engineers (USACE))

  • Lucas Crane

    (Science and Technologies for Phosphorus Sustainability (STEPS) Center
    Arizona State University)

  • Treavor Boyer

    (Science and Technologies for Phosphorus Sustainability (STEPS) Center
    Arizona State University)

Abstract

Urine diversion systems, which include waterless urinals and urine-diverting flush toilets, offer opportunities to conserve water, recover nutrients, promote circular economies, and improve sustainability. While technical development of these systems is critical, understanding stakeholder perceptions is equally important for their successful innovation, implementation, and adoption. This study conducts an exploratory analysis of stakeholder perceptions at U.S. academic institutions regarding how urine diversion technologies fit within the broader array of water conservation technologies and factors that influence decision-making related to urine diversion in buildings. We surveyed 65 stakeholders, including executive leaders, administrators, facilities managers, building managers, and sustainability professionals—key groups responsible for the adoption and maintenance of such systems but underrepresented in prior research. Participants reported a high level of awareness of water conservation technologies and varying degrees of implementation. Across all technologies, low-flush fixtures had the highest rate of implementation and waterless urinals had the highest rate of implementation and subsequent removal due to maintenance and infrastructure challenges. Participants also indicated that compliance with plumbing codes was the most critical factor when considering the implementation of urine diversion systems, followed by efficacy and cost-savings, and water conservation and nutrient recovery were among the least important factors. Future studies should focus on aligning urine diversion systems with building codes and regulations, mitigating clogging and odors to improve acceptance and adoption, and estimating costs and benefits when deciding on their implementation.

Suggested Citation

  • Khara Grieger & Matt Scholz & Christopher L. Cummings & Lucas Crane & Treavor Boyer, 2025. "Exploring awareness, implementation, and future use of urine diversion systems in U.S. university buildings," Environment Systems and Decisions, Springer, vol. 45(2), pages 1-13, June.
  • Handle: RePEc:spr:envsyd:v:45:y:2025:i:2:d:10.1007_s10669-025-10011-8
    DOI: 10.1007/s10669-025-10011-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10669-025-10011-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10669-025-10011-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ariane Krause & Franziska Häfner & Florian Augustin & Kai M. Udert, 2021. "Qualitative Risk Analysis for Contents of Dry Toilets Used to Produce Novel Recycling Fertilizers," Circular Economy and Sustainability, Springer, vol. 1(3), pages 1107-1146, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mona Mijthab & Raluca Anisie & Omar Crespo, 2021. "Mosan: Combining Circularity and Participatory Design to Address Sanitation in Low-Income Communities," Circular Economy and Sustainability, Springer, vol. 1(3), pages 1165-1191, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:envsyd:v:45:y:2025:i:2:d:10.1007_s10669-025-10011-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.