Author
Abstract
One of the most critical pillars of Industry 4.0 (I4.0) is Additive Manufacturing (AM) or 3D Printing technology. This transformative technology has garnered substantial attention due to its capacity to streamline processes, save time, and enhance product quality. Simultaneously, environmental concerns are mounting, with the growing accumulation of plastic bottle waste, offering a potential source of recycled material for 3D printing. To thoroughly harness the potential of AM and address the challenge of plastic bottle waste, a robust supply chain network is essential. Such a network not only facilitates the reintegration of plastic bottle waste and 3D printing byproducts into the value chain but also delivers significant environmental, social, and economic benefits, aligning with the tenets of sustainable development and circular economy. To tackle this complex challenge, a Mixed-Integer Linear Programming (MILP) mathematical model is offered to configure a Closed-Loop Supply Chain (CLSC) network with a strong emphasis on circularity. Environmental considerations are integral, and the primary objective is to minimize the overall cost of the network. Three well-known metaheuristics of Simulated Annealing (SA), Genetic Algorithm (GA), and Particle Swarm Optimization (PSO) are employed to treat the problem which are also efficiently adjusted by the Taguchi design technique. The efficacy of our solution methods is appraised across various problem instances. The findings reveal that the developed model, in conjunction with the fine-tuned metaheuristics, successfully optimizes the configuration of the desired circular CLSC network. In conclusion, this research represents a significant step toward the establishment of a circular supply chain that combines the strengths of 3D printing technology and the repurposing of plastic bottle waste. This innovative approach holds promise for not only reducing waste and enhancing sustainability but also fostering economic and social well-being.
Suggested Citation
Atefeh Rajabi-Kafshgar & Iman Seyedi & Erfan Babaee Tirkolaee, 2025.
"Circular closed-loop supply chain network design considering 3D printing and PET bottle waste,"
Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 27(8), pages 20345-20381, August.
Handle:
RePEc:spr:endesu:v:27:y:2025:i:8:d:10.1007_s10668-024-04767-3
DOI: 10.1007/s10668-024-04767-3
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:27:y:2025:i:8:d:10.1007_s10668-024-04767-3. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.