Author
Listed:
- Hang Ha
(Hanoi University of Civil Engineering)
- Quynh Duy Bui
(Hanoi University of Civil Engineering)
- Dinh Trong Tran
(Hanoi University of Civil Engineering)
- Dinh Quoc Nguyen
(Phenikaa University)
- Hanh Xuan Bui
(Transport Engineering Design Incorporated)
- Chinh Luu
(Hanoi University of Civil Engineering)
Abstract
Landslide is the most dangerous natural hazard in mountainous regions. Disasters due to landslides annually result in human casualties, destroyed property, and monetary damages. Landslide susceptibility maps, highlighting landslide-prone areas, can provide useful spatial information for risk management and mitigation. These maps are required to be updated continuously because of the complexity of the landslide formation and movement processes. This underlines the need to develop and use cutting-edge machine learning algorithms to produce more landslide predictive maps. The study aimed to compare the predictive performance of advanced gradient boosting algorithms for modeling landslide susceptibility, including Gradient Boosting (GB), Light Gradient Boosting Machine (LightGBM), Extreme Gradient Boosting (XGBoost), Categorical Boosting (CB), and Natural Gradient Boosting (NGBoost). Fifteen landslide influencing factors were collected and selected based on the relationship between historical landslide locations and local geo-environmental characteristics. The statistical parameters were used to compare and verify the models’ predictive performance. All proposed models have excellent forecast performances, of which the CB model has the best forecast performance (AUC = 0.921), followed by the GB model (AUC = 0.915), the LightGBM model (AUC = 0.911), the NGBoost (AUC = 0.900), and the XGBoost model (AUC = 0.897). Landslide susceptibility maps created by the CB model are recommended for the Bac Kan province in Vietnam after being validated with current landslide events recorded by the Vietnam Disasters Monitoring System. There is potential for gradient boosting models and landslide susceptibility maps to improve disaster management activities in hilly regions.
Suggested Citation
Hang Ha & Quynh Duy Bui & Dinh Trong Tran & Dinh Quoc Nguyen & Hanh Xuan Bui & Chinh Luu, 2025.
"Improving the forecast performance of landslide susceptibility mapping by using ensemble gradient boosting algorithms,"
Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 27(8), pages 18409-18443, August.
Handle:
RePEc:spr:endesu:v:27:y:2025:i:8:d:10.1007_s10668-024-04694-3
DOI: 10.1007/s10668-024-04694-3
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:27:y:2025:i:8:d:10.1007_s10668-024-04694-3. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.