Author
Listed:
- Xuyang Zhang
(Anhui University of Science and Technology)
- Xiaoyang Chen
(Anhui University of Science and Technology)
- Yuzhi Zhou
(Anhui University of Science and Technology)
- Yongchun Chen
(Ping’an Coal Mining Engineering, Research Institute Co., Ltd.)
- Linli Long
(Anhui University of Science and Technology)
- Pian Hu
(Anhui University of Science and Technology)
Abstract
Coal mining leads to surface subsidence and accumulation of water, which is the main characteristic of high diving coal mining areas, and the long time series monitoring of coal mining subsidence water bodies can help to assess the integrated impact effects of coal mining on land, ecology and society. In this context, the present study aims to predict water bodies in the Huainan mining area over the 1989–2021 period using the Landsat remote sensing image data and decision tree classification method to investigate the annual changes in the water body areas. In addition, the standard deviation ellipse and center of gravity migration models were used to analyze the spatial heterogeneity of water bodies, while the CA-Markov and MCE-CA-Markov models were applied to predict the future trend of water bodies for 2030. The results showed (1) substantial increases in the subsided water bodies in the Huainan mining area over the 1989–2021 period, with a rapid expansion rate, particularly in the northwestern part of the study area. In addition, water bodies migrated naturally in the northwest-southeast direction from 2015 to 2021; (2) changes in the water body areas in the Huainan mining area from 1989 to 2021 estimated at 284.03 km2, based on decision tree classification, with 1989 as the base year, with an average annual changing rate of 20.23%; (3) a high degree of consistency between the actual water bodies in 2021 and those predicted for 2030 using the CA-Markov and MCE-CA-Markov models, showing substantial increases in the water body areas in 2030. The sinkhole ponding areas formed a large lake, particularly in the Guqiao, Gu Bei, Zhangji, Xieqiao, and Liu Zhuang mines, expanding continuously toward the northwest. Therefore, investigating and predicting the spatiotemporal evolution of water bodies in coal mining subsidence areas with high diving levels are of great importance for providing a scientific basis to ensure the effective ecological restoration of coal mining subsidence areas.
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:27:y:2025:i:7:d:10.1007_s10668-024-04631-4. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.