Author
Listed:
- Bilal Aslam
(Riphah International University)
- Adeel Zafar
(Riphah International University)
- Umer Khalil
(COMSATS University Islamabad)
Abstract
Landslide susceptibility study is a critically important topic throughout the globe owing to the social and financial catastrophes of landslides. The present research aims to evaluate as well as compare the proficiencies of six advanced machine learning techniques (MLTs) for mapping the landslide susceptibility of northern parts of Pakistan. The considered MLTs include Linear Discriminant Analysis (LDA), Quadratic Discriminant Analysis, Artificial Neural Network (ANN), Naive Bayes, Multivariate Adaptive Regression Spline (MARS), along with Random Forest. The present research was performed applying GIS and R programming language (an open-source software). Primarily, the landslide inventory map was formulated with the help of an overall 3251 historical landslide events obtained through a variety of data sources. All the historical landslide locations were arbitrarily split into two groups with a proportion of 70% for training plus 30% for validating purposes. In total, sixteen landslide influencing factors were considered for modeling landslide susceptibility. These factors comprise aspect, elevation, slope, lithology, fault density, land cover classification system, topographic wetness index, earthquake, sediment transport index, normalized difference vegetation index, rainfall, soil, stream power index, road density, profile curvature, and plan curvature. The receiver operating characteristic, the area under curve (AUC), and root mean square error approaches were employed to appraise, validate, and relate the performance of the practiced MLTs. The outcomes demonstrated that AUC for six MLTs vary from 88.5% for LDA to 92.3% for ANN. The results reveal that among the six practiced MLTs, ANN (AUC = 92.3%) and MARS (AUC = 91.7%) have shown outstanding performances. Policymakers can use the findings of the present research and the produced landslide susceptibility maps for devising mitigation measures to curb the damages.
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:27:y:2025:i:10:d:10.1007_s10668-022-02314-6. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.