IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v23y2021i11d10.1007_s10668-021-01373-5.html
   My bibliography  Save this article

An in silico approach to target RNA-dependent RNA polymerase of COVID-19 with naturally occurring phytochemicals

Author

Listed:
  • Hafiza Salaha Mahrosh

    (Government College University)

  • Ghulam Mustafa

    (Government College University)

Abstract

The novel coronavirus disease 2019 (COVID-19) was firstly reported from Wuhan city of China and found as a highly contagious, transmittable and pathogenic viral infection. The World Health Organization declared COVID-19 as a pandemic since its emergence from China. The RNA-dependent RNA polymerase (nsp-12) is a complex with nsp-7 and nsp-8 cofactors and is a major constituent of viral replication and RNA synthesis machinery. In the current study, the RdRp of the virus was selected as a receptor protein for computational drug discovery. Computational homology modelling was done in order to find the hidden secondary structures and structural assessment of the viral protein to target them via antiviral drugs. The study was based on molecular docking of different phytochemicals to check their potentials against viral replicative proteins. Out of 200 ligands used in this study from different plants, the best ten were selected based on drug discovery parameters such as S-score, ligand interactions, hydrophobic interactions and druglikeness. The ten best selected ligands were found to be verbenalin, epigallocatechin, swertisin, nobiletin, pinoresinol, caftaric acid, hesperetin, islandicin, neochlorogenic acid and sesamin that exploit the potency as antagonists of viral protein. Among binding interactions of all ligands, Arg339 centred as the main interacting residue among almost all the ligands. Till now, many antiviral agents have shown potency in only mild cases of SARS-CoV-2, but no effective drug has been found for critical pulmonary cases. In clinical trials, many broad-spectrum antiviral agents have been still in trial periods of testing against SARS-CoV-2. Till date, no effective drug or vaccine has been validated with significant efficacy and potency against the SARS-CoV-2; therefore, there is an urgent need to design effective vaccine against nCoV-19 infection.

Suggested Citation

  • Hafiza Salaha Mahrosh & Ghulam Mustafa, 2021. "An in silico approach to target RNA-dependent RNA polymerase of COVID-19 with naturally occurring phytochemicals," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(11), pages 16674-16687, November.
  • Handle: RePEc:spr:endesu:v:23:y:2021:i:11:d:10.1007_s10668-021-01373-5
    DOI: 10.1007/s10668-021-01373-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-021-01373-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-021-01373-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ghulam Mustafa & Rawaba Arif & Asia Atta & Sumaira Sharif & Amer Jamil, 2017. "Bioactive Compounds from Medicinal Plants and Their Importance in Drug Discovery in Pakistan," Matrix Science Pharma (MSP), Zibeline International Publishing, vol. 1(1), pages 17-26, February.
    2. Robert N. Kirchdoerfer & Andrew B. Ward, 2019. "Structure of the SARS-CoV nsp12 polymerase bound to nsp7 and nsp8 co-factors," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    3. Hafiza Salaha Mahrosh & Ghulam Mustafa, 2021. "The COVID-19 puzzle: a global nightmare," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(9), pages 12710-12737, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aijing Feng & Sarah Bevins & Jeff Chandler & Thomas J. DeLiberto & Ria Ghai & Kristina Lantz & Julianna Lenoch & Adam Retchless & Susan Shriner & Cynthia Y. Tang & Suxiang Sue Tong & Mia Torchetti & A, 2023. "Transmission of SARS-CoV-2 in free-ranging white-tailed deer in the United States," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    2. Mohamed Fareh & Wei Zhao & Wenxin Hu & Joshua M. L. Casan & Amit Kumar & Jori Symons & Jennifer M. Zerbato & Danielle Fong & Ilia Voskoboinik & Paul G. Ekert & Rajeev Rudraraju & Damian F. J. Purcell , 2021. "Reprogrammed CRISPR-Cas13b suppresses SARS-CoV-2 replication and circumvents its mutational escape through mismatch tolerance," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    3. Xuan Zou & Xiaohong Xiao & Ziran Mo & Yashi Ge & Xing Jiang & Ruolin Huang & Mengxue Li & Zixin Deng & Shi Chen & Lianrong Wang & Sang Yup Lee, 2022. "Systematic strategies for developing phage resistant Escherichia coli strains," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    4. Hari Vishal Lakhani & Sneha S. Pillai & Mishghan Zehra & Ishita Sharma & Komal Sodhi, 2020. "Systematic Review of Clinical Insights into Novel Coronavirus (CoVID-19) Pandemic: Persisting Challenges in U.S. Rural Population," IJERPH, MDPI, vol. 17(12), pages 1-14, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:23:y:2021:i:11:d:10.1007_s10668-021-01373-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.