IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v20y2018i6d10.1007_s10668-017-0014-x.html
   My bibliography  Save this article

Potential for the desalination of a brackish groundwater aquifer under a background of rising sea level via salt intrusion prevention river gates in the coastal area of the Red River Delta, Vietnam

Author

Listed:
  • Nguyen Hoang

    (Vietnam Academy of Science and Technology)

  • Tong Ngoc Thanh

    (National Center for Water Resources Planning and Investigation)

  • Nguyen Duc Roi

    (Vietnam Academy of Science and Technology)

  • Trieu Duc Huy

    (National Center for Water Resources Planning and Investigation)

  • Tong Thanh Tung

    (National Center for Water Resources Planning and Investigation)

Abstract

Additional freshwater sources are required in many parts of the world, including the coastal areas of the Red River Delta (RRD), where the groundwater (GW) is generally brackish. Determining a feasible method for desalinating brackish aquifers would help provide additional freshwater sources. However, substantial desalination of brackish aquifers cannot be achieved under the natural conditions of GW flow and precipitation recharge. Although rainfall recharge to the shallow Holocene aquifer has occurred for hundreds of years, the aquifer still remains brackish since the natural hydraulic conditions do not allow a complete mixing between the fresh recharged water and aquifer salinized water or the discharging of the aquifer salinized water. The planned salt intrusion prevention gates in the Red River, Tra Ly River and Hoa River in the RRD coastal area, combined with increased GW abstraction and associated aquifer recharge with fresh river water, could result in the gradual desalination of the shallow Holocene aquifer. These effects would help improve the area’s resilience to freshwater shortages and sea level rises and would allow for the creation of a long-term sustainable water resource development plan to manage the salinization of water resources caused by sea level rises. Finite element (FE) modeling of GW flow, solute transport via GW flow and dynamic programming (DP) have been used to study the potential desalination of brackish aquifers, the magnitude of GW abstraction quantities and the spatial and temporal aspects of desalination. FE modeling of GW flow coupled with DP was utilized to identify the magnitude of sustainable abstraction quantities and the GW flow field, which is required in salt transport models. Multiple sizes of elements and time steps were used to adapt to the unsteady state of GW flow and hydraulic head variables between the elements in the FE meshes in order to ensure reasonable accuracy of numerical modeling. The GW flow and salt transport modeling and DP allowed determining quasi-steady-state GW abstraction rates and aquifer salinity levels for conditions that did and did not include the shallow Holocene unconfined aquifer recharge from rainfall. The aquifer modeled domain which is supposed to serve the pumping well field is 1.5 km2. The results showed that the Holocene aquifer may provide a stable abstraction rate of 100 m3/day starting in the 6th year (for the worst-case scenario with zero aquifer recharge from rainfall) to 130 m3/day starting in the 3rd year (for the scenario with aquifer recharge equal to 3% of the rainfall levels). During the first years of GW abstraction, the desalination of the brackish upper Holocene aquifer will mainly occur in the area close to the river, and at the 18th year of abstraction, almost the entire area between the river and line of pumping wells would be desalinized. From the 10th year of abstraction, the abstracted water has a total dissolved solids content lower than 0.5 g/l for the worst-case scenario with zero aquifer recharge from rainfall and lower than 0.42 g/l for the scenario with aquifer recharge equal to 3% of the rainfall. The modeling results indicate the simulated process by which abstraction of groundwater adjacent to the Tra Ly River could desalinize the brackish aquifer via freshwater recharge from the river.

Suggested Citation

  • Nguyen Hoang & Tong Ngoc Thanh & Nguyen Duc Roi & Trieu Duc Huy & Tong Thanh Tung, 2018. "Potential for the desalination of a brackish groundwater aquifer under a background of rising sea level via salt intrusion prevention river gates in the coastal area of the Red River Delta, Vietnam," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(6), pages 2747-2771, December.
  • Handle: RePEc:spr:endesu:v:20:y:2018:i:6:d:10.1007_s10668-017-0014-x
    DOI: 10.1007/s10668-017-0014-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-017-0014-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-017-0014-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:20:y:2018:i:6:d:10.1007_s10668-017-0014-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.