IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v91y2025i1d10.1007_s10589-025-00668-x.html
   My bibliography  Save this article

Inertial accelerated stochastic mirror descent for large-scale generalized tensor CP decomposition

Author

Listed:
  • Zehui Liu

    (Beihang University)

  • Qingsong Wang

    (Xiangtan University)

  • Chunfeng Cui

    (Beihang University)

  • Yong Xia

    (Beihang University)

Abstract

The majority of classic tensor CP decomposition models are designed for squared loss, utilizing Euclidean distance as a local proximal term. However, the Euclidean distance is unsuitable for the generalized loss function applicable to diverse types of real-world data, such as integer and binary data. Consequently, algorithms developed under the squared loss are not easily adaptable to handle these generalized losses, partially due to the absence of the gradient Lipschitz continuity. This paper explores generalized tensor CP decomposition, employing the Bregman distance as the proximal term and introducing an inertial accelerated block randomized stochastic mirror descent algorithm (iTableSMD). Within a broader multi-block variance reduction and inertial acceleration framework, we demonstrate the sublinear convergence rate for the subsequential sequence produced by the iTableSMD algorithm. We further show that iTableSMD requires at most $$\mathcal {O}(\varepsilon ^{-2})$$ O ( ε - 2 ) iterations in expectation to attain an $$\varepsilon $$ ε -stationary point and establish the global convergence of the sequence. Numerical experiments on real datasets demonstrate that our proposed algorithm is efficient and achieves better performance than the existing state-of-the-art methods.

Suggested Citation

  • Zehui Liu & Qingsong Wang & Chunfeng Cui & Yong Xia, 2025. "Inertial accelerated stochastic mirror descent for large-scale generalized tensor CP decomposition," Computational Optimization and Applications, Springer, vol. 91(1), pages 201-233, May.
  • Handle: RePEc:spr:coopap:v:91:y:2025:i:1:d:10.1007_s10589-025-00668-x
    DOI: 10.1007/s10589-025-00668-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-025-00668-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-025-00668-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Haihao Lu & Robert M. Freund & Yurii Nesterov, 2018. "Relatively smooth convex optimization by first-order methods, and applications," LIDAM Reprints CORE 2965, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    2. P. Tseng, 2001. "Convergence of a Block Coordinate Descent Method for Nondifferentiable Minimization," Journal of Optimization Theory and Applications, Springer, vol. 109(3), pages 475-494, June.
    3. J. Carroll & Jih-Jie Chang, 1970. "Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition," Psychometrika, Springer;The Psychometric Society, vol. 35(3), pages 283-319, September.
    4. Raymond Cattell, 1944. "“Parallel proportional profiles” and other principles for determining the choice of factors by rotation," Psychometrika, Springer;The Psychometric Society, vol. 9(4), pages 267-283, December.
    5. Heinz H. Bauschke & Jérôme Bolte & Marc Teboulle, 2017. "A Descent Lemma Beyond Lipschitz Gradient Continuity: First-Order Methods Revisited and Applications," Mathematics of Operations Research, INFORMS, vol. 42(2), pages 330-348, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Masoud Ahookhosh & Le Thi Khanh Hien & Nicolas Gillis & Panagiotis Patrinos, 2021. "A Block Inertial Bregman Proximal Algorithm for Nonsmooth Nonconvex Problems with Application to Symmetric Nonnegative Matrix Tri-Factorization," Journal of Optimization Theory and Applications, Springer, vol. 190(1), pages 234-258, July.
    2. Masoud Ahookhosh & Le Thi Khanh Hien & Nicolas Gillis & Panagiotis Patrinos, 2021. "Multi-block Bregman proximal alternating linearized minimization and its application to orthogonal nonnegative matrix factorization," Computational Optimization and Applications, Springer, vol. 79(3), pages 681-715, July.
    3. Emanuel Laude & Peter Ochs & Daniel Cremers, 2020. "Bregman Proximal Mappings and Bregman–Moreau Envelopes Under Relative Prox-Regularity," Journal of Optimization Theory and Applications, Springer, vol. 184(3), pages 724-761, March.
    4. Yin Liu & Sam Davanloo Tajbakhsh, 2023. "Stochastic Composition Optimization of Functions Without Lipschitz Continuous Gradient," Journal of Optimization Theory and Applications, Springer, vol. 198(1), pages 239-289, July.
    5. Pourya Behmandpoor & Puya Latafat & Andreas Themelis & Marc Moonen & Panagiotis Patrinos, 2024. "SPIRAL: a superlinearly convergent incremental proximal algorithm for nonconvex finite sum minimization," Computational Optimization and Applications, Springer, vol. 88(1), pages 71-106, May.
    6. Radu-Alexandru Dragomir & Alexandre d’Aspremont & Jérôme Bolte, 2021. "Quartic First-Order Methods for Low-Rank Minimization," Journal of Optimization Theory and Applications, Springer, vol. 189(2), pages 341-363, May.
    7. Richard Harshman & Margaret Lundy, 1996. "Uniqueness proof for a family of models sharing features of Tucker's three-mode factor analysis and PARAFAC/candecomp," Psychometrika, Springer;The Psychometric Society, vol. 61(1), pages 133-154, March.
    8. Alkousa, Mohammad & Stonyakin, Fedor & Gasnikov, Alexander & Abdo, Asmaa & Alcheikh, Mohammad, 2024. "Higher degree inexact model for optimization problems," Chaos, Solitons & Fractals, Elsevier, vol. 186(C).
    9. Abbaszadehpeivasti, Hadi, 2024. "Performance analysis of optimization methods for machine learning," Other publications TiSEM 3050a62d-1a1f-494e-99ef-7, Tilburg University, School of Economics and Management.
    10. Xin Jiang & Lieven Vandenberghe, 2023. "Bregman Three-Operator Splitting Methods," Journal of Optimization Theory and Applications, Springer, vol. 196(3), pages 936-972, March.
    11. Zamani, Moslem & Abbaszadehpeivasti, Hadi & de Klerk, Etienne, 2024. "The exact worst-case convergence rate of the alternating direction method of multipliers," Other publications TiSEM f30ae9e6-ed19-423f-bd1e-0, Tilburg University, School of Economics and Management.
    12. Masoud Ahookhosh, 2019. "Accelerated first-order methods for large-scale convex optimization: nearly optimal complexity under strong convexity," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 89(3), pages 319-353, June.
    13. Shota Takahashi & Akiko Takeda, 2025. "Approximate bregman proximal gradient algorithm for relatively smooth nonconvex optimization," Computational Optimization and Applications, Springer, vol. 90(1), pages 227-256, January.
    14. Monia Ranalli & Roberto Rocci, 2024. "Composite likelihood methods for parsimonious model-based clustering of mixed-type data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 18(2), pages 381-407, June.
    15. Jámbor, Attila & Kovács, Sándor & Somai, Miklós, 2016. "Tíz év az Európai Unióban - az új tagországok agrárteljesítményei [A decade in the EU: the agricultural performances of the new member-states]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(3), pages 260-284.
    16. Vincenzo Bonifaci, 2021. "A Laplacian approach to $$\ell _1$$ ℓ 1 -norm minimization," Computational Optimization and Applications, Springer, vol. 79(2), pages 441-469, June.
    17. Violetta Simonacci & Michele Gallo, 2024. "Three-way principal balance analysis: algorithm and interpretation," Annals of Operations Research, Springer, vol. 342(3), pages 1429-1443, November.
    18. Ziyuan Wang & Andreas Themelis & Hongjia Ou & Xianfu Wang, 2024. "A Mirror Inertial Forward–Reflected–Backward Splitting: Convergence Analysis Beyond Convexity and Lipschitz Smoothness," Journal of Optimization Theory and Applications, Springer, vol. 203(2), pages 1127-1159, November.
    19. Filip Hanzely & Peter Richtárik & Lin Xiao, 2021. "Accelerated Bregman proximal gradient methods for relatively smooth convex optimization," Computational Optimization and Applications, Springer, vol. 79(2), pages 405-440, June.
    20. Violetta Simonacci & Michele Gallo, 2024. "On four-way CP model estimation efficiency," Computational Statistics, Springer, vol. 39(1), pages 343-362, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:91:y:2025:i:1:d:10.1007_s10589-025-00668-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.