IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v80y2021i2d10.1007_s10589-021-00303-5.html
   My bibliography  Save this article

Two new bidirectional search algorithms

Author

Listed:
  • John A. Pavlik

    (University of Illinois)

  • Edward C. Sewell

    (Southern Illinois University Edwardsville)

  • Sheldon H. Jacobson

    (University of Illinois)

Abstract

This paper presents two new bidirectional heuristic search algorithms for solving the shortest path problem on graphs: consistent-heuristic bucket-based bidirectional search (CBBS) and front-to-front GPU bidirectional search (FFGBS). CBBS uses a consistent heuristic and groups nodes into buckets that organize nodes based on estimated path cost and known heuristic errors. FFGBS splits the work between the CPU and GPU, with the GPU solving a front-to-front heuristic and the CPU choosing nodes to expand. This paper also includes a new front-to-front version of the GAP heuristic for the pancake problem that is efficient to solve on a GPU. Computational experiments for CBBS are performed on the pancake problem. CBBS is faster and requires less node expansions with the GAP-1 heuristic, compared to bidirectional state of the algorithms like DIBBS and DVCBS. Computational experiments for FFGBS are performed on the pancake problem and DIMACS road network, showing that FFGBS is consistently the fastest algorithm on all but the smallest pancake stacks when using the GAP-2 heuristic and is also the fastest algorithm on the largest road networks.

Suggested Citation

  • John A. Pavlik & Edward C. Sewell & Sheldon H. Jacobson, 2021. "Two new bidirectional search algorithms," Computational Optimization and Applications, Springer, vol. 80(2), pages 377-409, November.
  • Handle: RePEc:spr:coopap:v:80:y:2021:i:2:d:10.1007_s10589-021-00303-5
    DOI: 10.1007/s10589-021-00303-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-021-00303-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-021-00303-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:80:y:2021:i:2:d:10.1007_s10589-021-00303-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.