IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v64y2016i3d10.1007_s10589-016-9829-x.html
   My bibliography  Save this article

Nonlinear residual minimization by iteratively reweighted least squares

Author

Listed:
  • Juliane Sigl

    (Technische Universität München)

Abstract

In this paper we address the numerical solution of minimal norm residuals of nonlinear equations in finite dimensions. We take particularly inspiration from the problem of finding a sparse vector solution of phase retrieval problems by using greedy algorithms based on iterative residual minimizations in the $$\ell _p$$ ℓ p -norm, for $$1 \le p \le 2$$ 1 ≤ p ≤ 2 . Due to the mild smoothness of the problem, especially for $$p \rightarrow 1$$ p → 1 , we develop and analyze a generalized version of iteratively reweighted least squares (IRLS). This simple and efficient algorithm performs the solution of optimization problems involving non-quadratic possibly non-convex and non-smooth cost functions, which can be transformed into a sequence of common least squares problems. The latter can be tackled eventually by more efficient numerical optimization methods. While its analysis has been by now developed in many different contexts (e.g., for sparse vector, low-rank matrix optimization, and for the solution of PDE involving p-Laplacians) when the model equation is linear, no results are up to now provided in case of nonlinear ones. We address here precisely the convergence and the rate of error decay of IRLS for such nonlinear problems. The analysis of the convergence of the algorithm is based on its reformulation as an alternating minimization of an energy functional. In fact its main variables are the competitors to solutions of the intermediate reweighted least squares problems and their weights. Under a specific condition of coercivity often verified in practice and assumptions of local convexity, we are able to show convergence of IRLS to minimizers of the nonlinear residual problem. For the case where we are lacking the local convexity, we propose an appropriate convexification by quadratic perturbations. Eventually we are able to show convergence of this modified procedure to at least a very good approximation of stationary points of the original problem. In order to illustrate the theoretical results we conclude the paper with several numerical experiments. We first compare IRLS with standard Matlab optimization functions for a simple and easily presentable example. Furthermore we numerically validate our theoretical results in the more complicated framework of phase retrieval problems, which are our main motivation. Finally we examine the recovery capability of the algorithm in the context of data corrupted by impulsive noise where the sparsification of the residual is desired.

Suggested Citation

  • Juliane Sigl, 2016. "Nonlinear residual minimization by iteratively reweighted least squares," Computational Optimization and Applications, Springer, vol. 64(3), pages 755-792, July.
  • Handle: RePEc:spr:coopap:v:64:y:2016:i:3:d:10.1007_s10589-016-9829-x
    DOI: 10.1007/s10589-016-9829-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-016-9829-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-016-9829-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Parvaneh Parvasideh & Mansoor Rezghi, 2021. "A novel dictionary learning method based on total least squares approach with application in high dimensional biological data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(3), pages 575-597, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:64:y:2016:i:3:d:10.1007_s10589-016-9829-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.