Author
Listed:
- Walter Murray
- Tomás Tinoco De Rubira
- Adam Wigington
Abstract
Solving power flow problems is essential for the reliable and efficient operation of an electric power network. However, current software for solving these problems have questionable robustness due to the limitations of the solution methods used. These methods are typically based on the Newton–Raphson method combined with switching heuristics for handling generator reactive power limits and voltage regulation. Among the limitations are the requirement of a good initial solution estimate, the inability to handle near rank-deficient Jacobian matrices, and the convergence issues that may arise due to conflicts between the switching heuristics and the Newton–Raphson process. These limitations are addressed by reformulating the power flow problem and using robust optimization techniques. In particular, the problem is formulated as a constrained optimization problem in which the objective function incorporates prior knowledge about power flow solutions, and solved using an augmented Lagrangian algorithm. The prior information included in the objective adds convexity to the problem, guiding iterates towards physically meaningful solutions, and helps the algorithm handle near rank-deficient Jacobian matrices as well as poor initial solution estimates. To eliminate the negative effects of using switching heuristics, generator reactive power limits and voltage regulation are modeled with complementarity constraints, and these are handled using smooth approximations of the Fischer–Burmeister function. Furthermore, when no solution exists, the new method is able to provide sensitivity information that aids an operator on how best to alter the system. The proposed method has been extensively tested on real power flow networks of up to 58k buses. Copyright Springer Science+Business Media New York 2015
Suggested Citation
Walter Murray & Tomás Tinoco De Rubira & Adam Wigington, 2015.
"A robust and informative method for solving large-scale power flow problems,"
Computational Optimization and Applications, Springer, vol. 62(2), pages 431-475, November.
Handle:
RePEc:spr:coopap:v:62:y:2015:i:2:p:431-475
DOI: 10.1007/s10589-015-9745-5
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:62:y:2015:i:2:p:431-475. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.