IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this article

A globally convergent primal-dual active-set framework for large-scale convex quadratic optimization

Listed author(s):
  • Frank Curtis

    ()

  • Zheng Han

    ()

  • Daniel Robinson

    ()

Registered author(s):

    We present a primal-dual active-set framework for solving large-scale convex quadratic optimization problems (QPs). In contrast to classical active-set methods, our framework allows for multiple simultaneous changes in the active-set estimate, which often leads to rapid identification of the optimal active-set regardless of the initial estimate. The iterates of our framework are the active-set estimates themselves, where for each a primal-dual solution is uniquely defined via a reduced subproblem. Through the introduction of an index set auxiliary to the active-set estimate, our approach is globally convergent for strictly convex QPs. Moreover, the computational cost of each iteration typically is only modestly more than the cost of solving a reduced linear system. Numerical results are provided, illustrating that two proposed instances of our framework are efficient in practice, even on poorly conditioned problems. We attribute these latter benefits to the relationship between our framework and semi-smooth Newton techniques. Copyright Springer Science+Business Media New York 2015

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://hdl.handle.net/10.1007/s10589-014-9681-9
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Springer in its journal Computational Optimization and Applications.

    Volume (Year): 60 (2015)
    Issue (Month): 2 (March)
    Pages: 311-341

    as
    in new window

    Handle: RePEc:spr:coopap:v:60:y:2015:i:2:p:311-341
    DOI: 10.1007/s10589-014-9681-9
    Contact details of provider: Web page: http://www.springer.com

    Order Information: Web: http://www.springer.com/math/journal/10589

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:60:y:2015:i:2:p:311-341. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla)

    or (Rebekah McClure)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.