IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v60y2015i2p311-341.html
   My bibliography  Save this article

A globally convergent primal-dual active-set framework for large-scale convex quadratic optimization

Author

Listed:
  • Frank Curtis

    ()

  • Zheng Han

    ()

  • Daniel Robinson

    ()

Abstract

We present a primal-dual active-set framework for solving large-scale convex quadratic optimization problems (QPs). In contrast to classical active-set methods, our framework allows for multiple simultaneous changes in the active-set estimate, which often leads to rapid identification of the optimal active-set regardless of the initial estimate. The iterates of our framework are the active-set estimates themselves, where for each a primal-dual solution is uniquely defined via a reduced subproblem. Through the introduction of an index set auxiliary to the active-set estimate, our approach is globally convergent for strictly convex QPs. Moreover, the computational cost of each iteration typically is only modestly more than the cost of solving a reduced linear system. Numerical results are provided, illustrating that two proposed instances of our framework are efficient in practice, even on poorly conditioned problems. We attribute these latter benefits to the relationship between our framework and semi-smooth Newton techniques. Copyright Springer Science+Business Media New York 2015

Suggested Citation

  • Frank Curtis & Zheng Han & Daniel Robinson, 2015. "A globally convergent primal-dual active-set framework for large-scale convex quadratic optimization," Computational Optimization and Applications, Springer, vol. 60(2), pages 311-341, March.
  • Handle: RePEc:spr:coopap:v:60:y:2015:i:2:p:311-341
    DOI: 10.1007/s10589-014-9681-9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10589-014-9681-9
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:spr:joptap:v:172:y:2017:i:3:d:10.1007_s10957-017-1060-0 is not listed on IDEAS

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:60:y:2015:i:2:p:311-341. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.