IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Monotone and nonmonotone trust-region-based algorithms for large scale unconstrained optimization problems

Listed author(s):
  • María Maciel


  • María Mendonça


  • Adriana Verdiell


Registered author(s):

    Two trust regions algorithms for unconstrained nonlinear optimization problems are presented: a monotone and a nonmonotone one. Both of them solve the trust region subproblem by the spectral projected gradient (SPG) method proposed by Birgin, Martínez and Raydan (in SIAM J. Optim. 10(4):1196–1211, 2000 ). SPG is a nonmonotone projected gradient algorithm for solving large-scale convex-constrained optimization problems. It combines the classical projected gradient method with the spectral gradient choice of steplength and a nonmonotone line search strategy. The simplicity (only requires matrix-vector products, and one projection per iteration) and rapid convergence of this scheme fits nicely with globalization techniques based on the trust region philosophy, for large-scale problems. In the nonmonotone algorithm the trial step is evaluated by acceptance via a rule which can be considered a generalization of the well known fraction of Cauchy decrease condition and a generalization of the nonmonotone line search proposed by Grippo, Lampariello and Lucidi (in SIAM J. Numer. Anal. 23:707–716, 1986 ). Convergence properties and extensive numerical results are presented. Our results establish the robustness and efficiency of the new algorithms. Copyright Springer Science+Business Media, LLC 2013

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Springer in its journal Computational Optimization and Applications.

    Volume (Year): 54 (2013)
    Issue (Month): 1 (January)
    Pages: 27-43

    in new window

    Handle: RePEc:spr:coopap:v:54:y:2013:i:1:p:27-43
    DOI: 10.1007/s10589-012-9477-8
    Contact details of provider: Web page:

    Order Information: Web:

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:54:y:2013:i:1:p:27-43. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla)

    or (Rebekah McClure)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.