IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v53y2012i1p227-248.html
   My bibliography  Save this article

Balanced POD for linear PDE robust control computations

Author

Listed:
  • John Singler

    ()

  • Belinda Batten

    ()

Abstract

A mathematical model of a physical system is never perfect; therefore, robust control laws are necessary for guaranteed stabilization of the nominal model and also “nearby” systems, including hopefully the actual physical system. We consider the computation of a robust control law for large-scale finite dimensional linear systems and a class of linear distributed parameter systems. The controller is robust with respect to left coprime factor perturbations of the nominal system. We present an algorithm based on balanced proper orthogonal decomposition to compute the nonstandard features of this robust control law. Convergence theory is given, and numerical results are presented for two partial differential equation systems. Copyright Springer Science+Business Media, LLC 2012

Suggested Citation

  • John Singler & Belinda Batten, 2012. "Balanced POD for linear PDE robust control computations," Computational Optimization and Applications, Springer, vol. 53(1), pages 227-248, September.
  • Handle: RePEc:spr:coopap:v:53:y:2012:i:1:p:227-248
    DOI: 10.1007/s10589-011-9451-x
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10589-011-9451-x
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kirsten Morris & Carmeliza Navasca, 2010. "Approximation of low rank solutions for linear quadratic control of partial differential equations," Computational Optimization and Applications, Springer, vol. 46(1), pages 93-111, May.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:53:y:2012:i:1:p:227-248. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.