IDEAS home Printed from
   My bibliography  Save this article

Vortex control in channel flows using translational invariant cost functionals


  • H. Kasumba


  • K. Kunisch



The use of translation invariant cost functionals for the reduction of vortices in the context of shape optimization of fluid flow domain is investigated. Analytical expressions for the shape design sensitivity involving different cost functionals are derived. Channel flow problems with a bump and an obstacle as possible control boundaries are taken as test examples. Numerical results are provided in various graphical forms for relatively low Reynolds numbers. Striking differences are found for the optimal shapes corresponding to the different cost functionals, which constitute different quantification of a vortex. Copyright Springer Science+Business Media, LLC 2012

Suggested Citation

  • H. Kasumba & K. Kunisch, 2012. "Vortex control in channel flows using translational invariant cost functionals," Computational Optimization and Applications, Springer, vol. 52(3), pages 691-717, July.
  • Handle: RePEc:spr:coopap:v:52:y:2012:i:3:p:691-717 DOI: 10.1007/s10589-011-9434-y

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Elias L. Khalil (ed.), 2003. "Trust," Books, Edward Elgar Publishing, number 2482.
    Full references (including those not matched with items on IDEAS)


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:52:y:2012:i:3:p:691-717. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.