IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v40y2025i9d10.1007_s00180-025-01665-8.html
   My bibliography  Save this article

Effective sample size approximations as entropy measures

Author

Listed:
  • L. Martino

    (Università degli Studi di Catania)

  • V. Elvira

    (University of Edinburgh)

Abstract

In this work, we analyze alternative effective sample size (ESS) metrics for importance sampling algorithms, and discuss a possible extended range of applications. We show the relationship between the ESS expressions used in the literature and two entropy families, the Rényi and Tsallis entropy. The Rényi entropy is connected to the Huggins-Roy’s ESS family introduced in Huggins and Roy (2015). We prove that that all the ESS functions included in the Huggins-Roy’s family fulfill all the desirable theoretical conditions. We analyzed and remark the connections with several other fields, such as the Hill numbers introduced in ecology, the Gini inequality coefficient employed in economics, and the Gini impurity index used mainly in machine learning, to name a few. Finally, by numerical simulations, we study the performance of different ESS expressions contained in the previous ESS families in terms of approximation of the theoretical ESS definition, and show the application of ESS formulas in a variable selection problem.

Suggested Citation

  • L. Martino & V. Elvira, 2025. "Effective sample size approximations as entropy measures," Computational Statistics, Springer, vol. 40(9), pages 5433-5464, December.
  • Handle: RePEc:spr:compst:v:40:y:2025:i:9:d:10.1007_s00180-025-01665-8
    DOI: 10.1007/s00180-025-01665-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-025-01665-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-025-01665-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:40:y:2025:i:9:d:10.1007_s00180-025-01665-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.