Partially functional linear expectile regression model with missing observations
Author
Abstract
Suggested Citation
DOI: 10.1007/s00180-025-01652-z
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.References listed on IDEAS
- Aneiros, Germán & Horová, Ivana & Hušková, Marie & Vieu, Philippe, 2022. "On functional data analysis and related topics," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
- Yan-Ping Hu & Han-Ying Liang, 2024. "Empirical likelihood in single-index partially functional linear model with missing observations," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 53(3), pages 882-908, February.
- Yao, Fang & Sue-Chee, Shivon & Wang, Fan, 2017. "Regularized partially functional quantile regression," Journal of Multivariate Analysis, Elsevier, vol. 156(C), pages 39-56.
- Kehui Chen & Hans‐Georg Müller, 2012. "Conditional quantile analysis when covariates are functions, with application to growth data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 74(1), pages 67-89, January.
- Nengxiang Ling & Yujie Yang & Qianqian Peng, 2025. "Partial linear quantile regression model with incompletely observed functional covariates," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 37(3), pages 713-739, July.
- Christophe Crambes & Chayma Daayeb & Ali Gannoun & Yousri Henchiri, 2023. "Functional linear model with partially observed covariate and missing values in the response," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 35(1), pages 172-197, January.
- Litimein, Ouahiba & Laksaci, Ali & Mechab, Boubaker & Bouzebda, Salim, 2023. "Local linear estimate of the functional expectile regression," Statistics & Probability Letters, Elsevier, vol. 192(C).
- Yuping Hu & Liugen Xue & Sanying Feng, 2018. "Empirical likelihood inference for partial functional linear model with missing responses," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 47(19), pages 4673-4691, October.
- Ma, Haiqiang & Li, Ting & Zhu, Hongtu & Zhu, Zhongyi, 2019. "Quantile regression for functional partially linear model in ultra-high dimensions," Computational Statistics & Data Analysis, Elsevier, vol. 129(C), pages 135-147.
- Gabriela Ciuperca, 2025. "Smoothed empirical likelihood estimation and automatic variable selection for an expectile high-dimensional model," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 54(10), pages 2863-2901, May.
- Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
- Aneiros, Germán & Novo, Silvia & Vieu, Philippe, 2022. "Variable selection in functional regression models: A review," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
- Newey, Whitney K & Powell, James L, 1987. "Asymmetric Least Squares Estimation and Testing," Econometrica, Econometric Society, vol. 55(4), pages 819-847, July.
- Aneiros, Germán & Cao, Ricardo & Fraiman, Ricardo & Genest, Christian & Vieu, Philippe, 2019. "Recent advances in functional data analysis and high-dimensional statistics," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 3-9.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Chengxin Wu & Nengxiang Ling & Philippe Vieu & Guoliang Fan, 2025. "Composite quantile estimation in partially functional linear regression model with randomly censored responses," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 34(1), pages 28-47, March.
- Ufuk Beyaztas & Han Lin Shang & Aylin Alin, 2022. "Function-on-Function Partial Quantile Regression," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(1), pages 149-174, March.
- Ma, Haiqiang & Li, Ting & Zhu, Hongtu & Zhu, Zhongyi, 2019. "Quantile regression for functional partially linear model in ultra-high dimensions," Computational Statistics & Data Analysis, Elsevier, vol. 129(C), pages 135-147.
- Wang, Bingling & Li, Yingxing & Härdle, Wolfgang Karl, 2022.
"K-expectiles clustering,"
Journal of Multivariate Analysis, Elsevier, vol. 189(C).
- Wang, Bingling & Li, Yingxing & Härdle, Wolfgang, 2021. "K-expectiles clustering," IRTG 1792 Discussion Papers 2021-003, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Mohammedi, Mustapha & Bouzebda, Salim & Laksaci, Ali, 2021. "The consistency and asymptotic normality of the kernel type expectile regression estimator for functional data," Journal of Multivariate Analysis, Elsevier, vol. 181(C).
- Litimein, Ouahiba & Laksaci, Ali & Mechab, Boubaker & Bouzebda, Salim, 2023. "Local linear estimate of the functional expectile regression," Statistics & Probability Letters, Elsevier, vol. 192(C).
- Mustapha Mohammedi & Salim Bouzebda & Ali Laksaci, 2025. "Asymptotic results of the randomly censored kernel-type expectile regression estimator for functional dependent data," Statistical Inference for Stochastic Processes, Springer, vol. 28(2), pages 1-39, August.
- Liang, Weijuan & Zhang, Qingzhao & Ma, Shuangge, 2023. "Locally sparse quantile estimation for a partially functional interaction model," Computational Statistics & Data Analysis, Elsevier, vol. 186(C).
- Jianing Fan & Hans‐Georg Müller, 2022. "Conditional distribution regression for functional responses," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(2), pages 502-524, June.
- Ufuk Beyaztas & Han Lin Shang & Semanur Saricam, 2025. "Penalized function-on-function linear quantile regression," Computational Statistics, Springer, vol. 40(1), pages 301-329, January.
- Sultana Didi & Salim Bouzebda, 2022. "Wavelet Density and Regression Estimators for Continuous Time Functional Stationary and Ergodic Processes," Mathematics, MDPI, vol. 10(22), pages 1-37, November.
- Akosah, Nana Kwame & Alagidede, Imhotep Paul & Schaling, Eric, 2020. "Testing for asymmetry in monetary policy rule for small-open developing economies: Multiscale Bayesian quantile evidence from Ghana," The Journal of Economic Asymmetries, Elsevier, vol. 22(C).
- Chen, Yu & Ma, Mengyuan & Sun, Hongfang, 2023. "Statistical inference for extreme extremile in heavy-tailed heteroscedastic regression model," Insurance: Mathematics and Economics, Elsevier, vol. 111(C), pages 142-162.
- Otto-Sobotka, Fabian & Salvati, Nicola & Ranalli, Maria Giovanna & Kneib, Thomas, 2019. "Adaptive semiparametric M-quantile regression," Econometrics and Statistics, Elsevier, vol. 11(C), pages 116-129.
- Parente, Paulo M.D.C. & Smith, Richard J., 2011.
"Gel Methods For Nonsmooth Moment Indicators,"
Econometric Theory, Cambridge University Press, vol. 27(1), pages 74-113, February.
- Paulo Parente & Richard Smith, 2008. "GEL methods for non-smooth moment indicators," CeMMAP working papers CWP19/08, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Dingshi Tian & Zongwu Cai & Ying Fang, 2018. "Econometric Modeling of Risk Measures: A Selective Review of the Recent Literature," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 201807, University of Kansas, Department of Economics, revised Oct 2018.
- N. Salvati & N. Tzavidis & M. Pratesi & R. Chambers, 2012. "Small area estimation via M-quantile geographically weighted regression," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(1), pages 1-28, March.
- Min Ren & Shengli Zhao & Mingqiu Wang & Xinbei Zhu, 2024. "Robust optimal subsampling based on weighted asymmetric least squares," Statistical Papers, Springer, vol. 65(4), pages 2221-2251, June.
- Zhang, Feipeng & Xu, Yixiong & Fan, Caiyun, 2023. "Nonparametric inference of expectile-based value-at-risk for financial time series with application to risk assessment," International Review of Financial Analysis, Elsevier, vol. 90(C).
- Halkos, George E., 2011. "Nonparametric modelling of biodiversity: Determinants of threatened species," Journal of Policy Modeling, Elsevier, vol. 33(4), pages 618-635, July.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:40:y:2025:i:7:d:10.1007_s00180-025-01652-z. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/a/spr/compst/v40y2025i7d10.1007_s00180-025-01652-z.html