IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v40y2025i7d10.1007_s00180-025-01619-0.html
   My bibliography  Save this article

Parameter-expanded ECME algorithms for logistic and penalized logistic regression

Author

Listed:
  • Nicholas C. Henderson

    (University of Michigan)

  • Zhongzhe Ouyang

    (University of Michigan)

Abstract

Parameter estimation in logistic regression is a well-studied problem with the Newton–Raphson method being one of the most prominent optimization techniques used in practice. A number of monotone optimization methods including minorization-maximization (MM) algorithms, expectation-maximization (EM) algorithms and related variational Bayes approaches offer useful alternatives guaranteed to increase the logistic regression likelihood at every iteration. In this article, we propose and evaluate an optimization procedure that is based on a straightforward modification of an EM algorithm for logistic regression. Our method can substantially improve the computational efficiency of the EM algorithm while preserving the monotonicity of EM and the simplicity of the EM parameter updates. By introducing an additional latent parameter and selecting this parameter to maximize the penalized observed-data log-likelihood at every iteration, our iterative algorithm can be interpreted as a parameter-expanded expectation-conditional maximization either (ECME) algorithm, and we demonstrate how to use the parameter-expanded ECME with an arbitrary choice of weights and penalty function. In addition, we describe a generalized version of our parameter-expanded ECME algorithm that can be tailored to the challenges encountered in specific high-dimensional problems, and we study several interesting connections between this generalized algorithm and other well-known methods. Performance comparisons between our method, the EM algorithm, Newton–Raphson, and several other optimization methods are presented using an extensive series of simulation studies based upon both real and synthetic datasets.

Suggested Citation

  • Nicholas C. Henderson & Zhongzhe Ouyang, 2025. "Parameter-expanded ECME algorithms for logistic and penalized logistic regression," Computational Statistics, Springer, vol. 40(7), pages 3883-3909, September.
  • Handle: RePEc:spr:compst:v:40:y:2025:i:7:d:10.1007_s00180-025-01619-0
    DOI: 10.1007/s00180-025-01619-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-025-01619-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-025-01619-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Dankmar Böhning & Bruce Lindsay, 1988. "Monotonicity of quadratic-approximation algorithms," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 40(4), pages 641-663, December.
    2. Ravi Varadhan & Christophe Roland, 2008. "Simple and Globally Convergent Methods for Accelerating the Convergence of Any EM Algorithm," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 35(2), pages 335-353, June.
    3. Joseph G. Ibrahim & Ming-Hui Chen & Stuart R. Lipsitz, 1999. "Monte Carlo EM for Missing Covariates in Parametric Regression Models," Biometrics, The International Biometric Society, vol. 55(2), pages 591-596, June.
    4. Friedman, Jerome H. & Hastie, Trevor & Tibshirani, Rob, 2010. "Regularization Paths for Generalized Linear Models via Coordinate Descent," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i01).
    5. Nicholas G. Polson & James G. Scott & Jesse Windle, 2013. "Bayesian Inference for Logistic Models Using Pólya--Gamma Latent Variables," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(504), pages 1339-1349, December.
    6. Liu, Chuanhai, 1997. "ML Estimation of the MultivariatetDistribution and the EM Algorithm," Journal of Multivariate Analysis, Elsevier, vol. 63(2), pages 296-312, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tian, Guo-Liang & Tang, Man-Lai & Liu, Chunling, 2012. "Accelerating the quadratic lower-bound algorithm via optimizing the shrinkage parameter," Computational Statistics & Data Analysis, Elsevier, vol. 56(2), pages 255-265.
    2. Liu, Wenchen & Tang, Yincai & Wu, Xianyi, 2020. "Separating variables to accelerate non-convex regularized optimization," Computational Statistics & Data Analysis, Elsevier, vol. 147(C).
    3. Durante, Daniele & Canale, Antonio & Rigon, Tommaso, 2019. "A nested expectation–maximization algorithm for latent class models with covariates," Statistics & Probability Letters, Elsevier, vol. 146(C), pages 97-103.
    4. Wenjie Wang & Chongliang Luo & Robert H. Aseltine & Fei Wang & Jun Yan & Kun Chen, 2025. "Survival Modeling of Suicide Risk with Rare and Uncertain Diagnoses," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 17(1), pages 35-61, April.
    5. Lee, Sangin & Kwon, Sunghoon & Kim, Yongdai, 2016. "A modified local quadratic approximation algorithm for penalized optimization problems," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 275-286.
    6. Mennig, Philipp, 2025. "Who cares about agriculture? Analyzing German parliamentary debates on agriculture and food with structural topic modeling," Food Policy, Elsevier, vol. 130(C).
    7. McLain, Alexander C. & Zgodic, Anja & Bondell, Howard, 2025. "Efficient sparse high-dimensional linear regression with a partitioned empirical Bayes ECM algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 207(C).
    8. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    9. Buddhavarapu, Prasad & Bansal, Prateek & Prozzi, Jorge A., 2021. "A new spatial count data model with time-varying parameters," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 566-586.
    10. Niko Hauzenberger & Florian Huber, 2020. "Model instability in predictive exchange rate regressions," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(2), pages 168-186, March.
    11. Rui Wang & Naihua Xiu & Kim-Chuan Toh, 2021. "Subspace quadratic regularization method for group sparse multinomial logistic regression," Computational Optimization and Applications, Springer, vol. 79(3), pages 531-559, July.
    12. Mkhadri, Abdallah & Ouhourane, Mohamed, 2013. "An extended variable inclusion and shrinkage algorithm for correlated variables," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 631-644.
    13. Anindya Bhadra & Arvind Rao & Veerabhadran Baladandayuthapani, 2018. "Inferring network structure in non†normal and mixed discrete†continuous genomic data," Biometrics, The International Biometric Society, vol. 74(1), pages 185-195, March.
    14. Chen, Le-Yu & Lee, Sokbae, 2018. "Best subset binary prediction," Journal of Econometrics, Elsevier, vol. 206(1), pages 39-56.
    15. Haoying Wang & Guohui Wu, 2022. "Modeling discrete choices with large fine-scale spatial data: opportunities and challenges," Journal of Geographical Systems, Springer, vol. 24(3), pages 325-351, July.
    16. Chuliá, Helena & Garrón, Ignacio & Uribe, Jorge M., 2024. "Daily growth at risk: Financial or real drivers? The answer is not always the same," International Journal of Forecasting, Elsevier, vol. 40(2), pages 762-776.
    17. Greg Lewis & Bora Ozaltun & Georgios Zervas, 2021. "Maximum Likelihood Estimation of Differentiated Products Demand Systems," Papers 2111.12397, arXiv.org.
    18. Sung Jae Jun & Sokbae Lee, 2024. "Causal Inference Under Outcome-Based Sampling with Monotonicity Assumptions," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(3), pages 998-1009, July.
    19. Xiangwei Li & Thomas Delerue & Ben Schöttker & Bernd Holleczek & Eva Grill & Annette Peters & Melanie Waldenberger & Barbara Thorand & Hermann Brenner, 2022. "Derivation and validation of an epigenetic frailty risk score in population-based cohorts of older adults," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    20. Christopher J Greenwood & George J Youssef & Primrose Letcher & Jacqui A Macdonald & Lauryn J Hagg & Ann Sanson & Jenn Mcintosh & Delyse M Hutchinson & John W Toumbourou & Matthew Fuller-Tyszkiewicz &, 2020. "A comparison of penalised regression methods for informing the selection of predictive markers," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-14, November.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:40:y:2025:i:7:d:10.1007_s00180-025-01619-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.