IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v40y2025i7d10.1007_s00180-025-01609-2.html
   My bibliography  Save this article

An adaptive importance sampling for locally stable point processes

Author

Listed:
  • Hee-Geon Kang

    (University of Seoul)

  • Sunggon Kim

    (University of Seoul)

Abstract

The problem of finding the expected value of a statistic of a locally stable point process in a bounded region is addressed. We propose an adaptive importance sampling for solving the problem. In our proposal, we restrict the importance point process to the family of homogeneous Poisson point processes, which enables us to generate quickly independent samples of the importance point process. The optimal intensity of the importance point process is found by applying the cross-entropy minimization method. In the proposed scheme, the expected value of the statistic and the optimal intensity are iteratively estimated in an adaptive manner. We show that the proposed estimator converges to the target value almost surely, and prove the asymptotic normality of it. We explain how to apply the proposed scheme to the estimation of the intensity of a stationary pairwise interaction point process. The performance of the proposed scheme is compared numerically with Markov chain Monte Carlo simulation and perfect sampling.

Suggested Citation

  • Hee-Geon Kang & Sunggon Kim, 2025. "An adaptive importance sampling for locally stable point processes," Computational Statistics, Springer, vol. 40(7), pages 3745-3779, September.
  • Handle: RePEc:spr:compst:v:40:y:2025:i:7:d:10.1007_s00180-025-01609-2
    DOI: 10.1007/s00180-025-01609-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-025-01609-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-025-01609-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Halis Sak & Wolfgang Hörmann, 2012. "Fast simulations in credit risk," Quantitative Finance, Taylor & Francis Journals, vol. 12(10), pages 1557-1569, October.
    2. Peter W. Glynn & Ward Whitt, 1992. "The Asymptotic Efficiency of Simulation Estimators," Operations Research, INFORMS, vol. 40(3), pages 505-520, June.
    3. Pieter-Tjerk de Boer & Dirk Kroese & Shie Mannor & Reuven Rubinstein, 2005. "A Tutorial on the Cross-Entropy Method," Annals of Operations Research, Springer, vol. 134(1), pages 19-67, February.
    4. Baddeley, Adrian & Turner, Rolf, 2005. "spatstat: An R Package for Analyzing Spatial Point Patterns," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 12(i06).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sunggon Kim & Jisu Yu, 2023. "Stratified importance sampling for a Bernoulli mixture model of portfolio credit risk," Annals of Operations Research, Springer, vol. 322(2), pages 819-849, March.
    2. Arii, Ken & Caspersen, John P. & Jones, Trevor A. & Thomas, Sean C., 2008. "A selection harvesting algorithm for use in spatially explicit individual-based forest simulation models," Ecological Modelling, Elsevier, vol. 211(3), pages 251-266.
    3. Frank Davenport, 2017. "Estimating standard errors in spatial panel models with time varying spatial correlation," Papers in Regional Science, Wiley Blackwell, vol. 96, pages 155-177, March.
    4. İsmail Başoğlu & Wolfgang Hörmann & Halis Sak, 2018. "Efficient simulations for a Bernoulli mixture model of portfolio credit risk," Annals of Operations Research, Springer, vol. 260(1), pages 113-128, January.
    5. Leandro, Camila & Jay-Robert, Pierre & Mériguet, Bruno & Houard, Xavier & Renner, Ian W., 2020. "Is my sdm good enough? insights from a citizen science dataset in a point process modeling framework," Ecological Modelling, Elsevier, vol. 438(C).
    6. Giesecke, K. & Schwenkler, G., 2019. "Simulated likelihood estimators for discretely observed jump–diffusions," Journal of Econometrics, Elsevier, vol. 213(2), pages 297-320.
    7. Nicoletta D'Angelo, 2025. "Detecting Changes in Space‐Varying Parameters of Local Poisson Point Processes," Environmetrics, John Wiley & Sons, Ltd., vol. 36(5), July.
    8. Xi Chen & Enlu Zhou, 2015. "Population model-based optimization," Journal of Global Optimization, Springer, vol. 63(1), pages 125-148, September.
    9. Vijay Rajagopal & Gregory Bass & Cameron G Walker & David J Crossman & Amorita Petzer & Anthony Hickey & Ivo Siekmann & Masahiko Hoshijima & Mark H Ellisman & Edmund J Crampin & Christian Soeller, 2015. "Examination of the Effects of Heterogeneous Organization of RyR Clusters, Myofibrils and Mitochondria on Ca2+ Release Patterns in Cardiomyocytes," PLOS Computational Biology, Public Library of Science, vol. 11(9), pages 1-31, September.
    10. Christoph Lambio & Tillman Schmitz & Richard Elson & Jeffrey Butler & Alexandra Roth & Silke Feller & Nicolai Savaskan & Tobia Lakes, 2023. "Exploring the Spatial Relative Risk of COVID-19 in Berlin-Neukölln," IJERPH, MDPI, vol. 20(10), pages 1-22, May.
    11. Abdollah Jalilian, 2017. "Modelling and classification of species abundance: a case study in the Barro Colorado Island plot," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(13), pages 2401-2409, October.
    12. Éric Marcon & Florence Puech, 2023. "Mapping distributions in non-homogeneous space with distance-based methods [Cartographie des distributions dans un espace non homogène à l'aide de méthodes basées sur la distance]," Post-Print hal-04345149, HAL.
    13. Lvyang Qiu & Shuyu Li & Yunsick Sung, 2021. "3D-DCDAE: Unsupervised Music Latent Representations Learning Method Based on a Deep 3D Convolutional Denoising Autoencoder for Music Genre Classification," Mathematics, MDPI, vol. 9(18), pages 1-17, September.
    14. Akimoto, Youhei & Auger, Anne & Hansen, Nikolaus, 2022. "An ODE method to prove the geometric convergence of adaptive stochastic algorithms," Stochastic Processes and their Applications, Elsevier, vol. 145(C), pages 269-307.
    15. Anastasia Spiliopoulou & Ioannis Papamichail & Markos Papageorgiou & Yannis Tyrinopoulos & John Chrysoulakis, 2017. "Macroscopic traffic flow model calibration using different optimization algorithms," Operational Research, Springer, vol. 17(1), pages 145-164, April.
    16. Eric Marcon & Florence Puech, 2012. "A typology of distance-based measures of spatial concentration," Working Papers halshs-00679993, HAL.
    17. Deng, Xiangtian & Zhang, Yi & Jiang, Yi & Zhang, Yi & Qi, He, 2024. "A novel operation method for renewable building by combining distributed DC energy system and deep reinforcement learning," Applied Energy, Elsevier, vol. 353(PB).
    18. Zhang, Yali & Shang, Pengjian, 2019. "Multivariate multiscale distribution entropy of financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 72-80.
    19. Davies, Tilman M. & Jones, Khair & Hazelton, Martin L., 2016. "Symmetric adaptive smoothing regimens for estimation of the spatial relative risk function," Computational Statistics & Data Analysis, Elsevier, vol. 101(C), pages 12-28.
    20. A. Gouda & T. Szántai, 2008. "Rare event probabilities in stochastic networks," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 16(4), pages 441-461, December.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:40:y:2025:i:7:d:10.1007_s00180-025-01609-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.