IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v40y2025i7d10.1007_s00180-024-01587-x.html
   My bibliography  Save this article

Derandomized Truncated D-vine Copula Knockoffs with e-values to control the false discovery rate

Author

Listed:
  • Alejandro Román Vásquez

    (Universidad Autónoma Metropolitana Unidad Iztapalapa)

  • José Ulises Márquez Urbina

    (Centro de Investigación en Matemáticas, A.C.
    Consejo Nacional de Humanidades, Ciencia y Tecnología
    University of Navarra)

  • Graciela González Farías

    (University of Navarra
    Research Center in Mathematics)

  • Gabriel Escarela

    (Universidad Autónoma Metropolitana Unidad Iztapalapa)

Abstract

The Model-X knockoffs is a practical methodology for variable selection, which stands out from other selection strategies since it allows for the control of the false discovery rate, relying on finite-sample guarantees. In this article, we propose a Truncated D-vine Copula Knockoffs (TDCK) algorithm for sampling approximate knockoffs from complex multivariate distributions. Our algorithm enhances and improves features of previous attempts to sample knockoffs under the multivariate setting, with the three main contributions being: (1) the truncation of the D-vine copula, which reduces the dependence between the original variables and their corresponding knockoffs, thus improving the statistical power; (2) the employment of a straightforward non-parametric formulation for marginal transformations, eliminating the need for a specific parametric family or a kernel density estimator; (3) the use of the “rvinecopulib” R package offers better flexibility than the existing fitting vine copula knockoff methods. To eliminate the randomness from the different sets of selected variables in distinct realizations, we wrap the TDCK method with an existing derandomizing procedure for knockoffs, leading to a Derandomized Truncated D-vine Copula Knockoffs with e-values (DTDCKe) procedure. We demonstrate the robustness of the DTDCKe procedure under various scenarios with extensive simulation studies. We further illustrate its efficacy using a gene expression dataset, showing it achieves a more reliable gene selection than other competing methods when the findings are compared with those of a meta-analysis. The results indicate that our Truncated D-vine copula approach is robust and has superior power, representing an appealing approach for variable selection in different multivariate applications, particularly in gene expression analysis.

Suggested Citation

  • Alejandro Román Vásquez & José Ulises Márquez Urbina & Graciela González Farías & Gabriel Escarela, 2025. "Derandomized Truncated D-vine Copula Knockoffs with e-values to control the false discovery rate," Computational Statistics, Springer, vol. 40(7), pages 3843-3866, September.
  • Handle: RePEc:spr:compst:v:40:y:2025:i:7:d:10.1007_s00180-024-01587-x
    DOI: 10.1007/s00180-024-01587-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-024-01587-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-024-01587-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Roger M. Cooke & Harry Joe & Bo Chang, 2020. "Vine copula regression for observational studies," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(2), pages 141-167, June.
    2. Müller, Dominik & Czado, Claudia, 2019. "Dependence modelling in ultra high dimensions with vine copulas and the Graphical Lasso," Computational Statistics & Data Analysis, Elsevier, vol. 137(C), pages 211-232.
    3. Nagler, T. & Bumann, C. & Czado, C., 2019. "Model selection in sparse high-dimensional vine copula models with an application to portfolio risk," Journal of Multivariate Analysis, Elsevier, vol. 172(C), pages 180-192.
    4. Nagler, Thomas & Czado, Claudia, 2016. "Evading the curse of dimensionality in nonparametric density estimation with simplified vine copulas," Journal of Multivariate Analysis, Elsevier, vol. 151(C), pages 69-89.
    5. Stephen Bates & Emmanuel Candès & Lucas Janson & Wenshuo Wang, 2021. "Metropolized Knockoff Sampling," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(535), pages 1413-1427, July.
    6. Roberts, S. & Nowak, G., 2014. "Stabilizing the lasso against cross-validation variability," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 198-211.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chang, Bo & Joe, Harry, 2019. "Prediction based on conditional distributions of vine copulas," Computational Statistics & Data Analysis, Elsevier, vol. 139(C), pages 45-63.
    2. Alejandro Román Vásquez & José Ulises Márquez Urbina & Graciela González Farías & Gabriel Escarela, 2024. "Controlling the false discovery rate by a Latent Gaussian Copula Knockoff procedure," Computational Statistics, Springer, vol. 39(3), pages 1435-1458, May.
    3. Genest Christian & Scherer Matthias, 2019. "The world of vines: An interview with Claudia Czado," Dependence Modeling, De Gruyter, vol. 7(1), pages 169-180, January.
    4. F. Durante & A. Gatto & F. Ravazzolo, 2024. "Understanding relationships with the Aggregate Zonal Imbalance using copulas," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 33(2), pages 513-554, April.
    5. repec:plo:pone00:0213584 is not listed on IDEAS
    6. Han, Qinkai & Wang, Tianyang & Chu, Fulei, 2022. "Nonparametric copula modeling of wind speed-wind shear for the assessment of height-dependent wind energy in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    7. Steffen Nico & Dickhaus Thorsten, 2020. "Optimizing effective numbers of tests by vine copula modeling," Dependence Modeling, De Gruyter, vol. 8(1), pages 172-185, January.
    8. Gildas Mazo & François Portier, 2021. "Parametric versus nonparametric: The fitness coefficient," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(4), pages 1344-1383, December.
    9. Nagler Thomas & Schellhase Christian & Czado Claudia, 2017. "Nonparametric estimation of simplified vine copula models: comparison of methods," Dependence Modeling, De Gruyter, vol. 5(1), pages 99-120, January.
    10. Himchan Jeong & Dipak Dey, 2020. "Application of a Vine Copula for Multi-Line Insurance Reserving," Risks, MDPI, vol. 8(4), pages 1-23, October.
    11. M. Mesfioui & T. Bouezmarni & M. Belalia, 2023. "Copula-based link functions in binary regression models," Statistical Papers, Springer, vol. 64(2), pages 557-585, April.
    12. Hemei Li & Zhenya Liu & Shixuan Wang, 2022. "Vines climbing higher: Risk management for commodity futures markets using a regular vine copula approach," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(2), pages 2438-2457, April.
    13. Ash Abebe & Huybrechts F. Bindele & Masego Otlaadisa & Boikanyo Makubate, 2021. "Robust estimation of single index models with responses missing at random," Statistical Papers, Springer, vol. 62(5), pages 2195-2225, October.
    14. Kerkhofs, Ruben & Bernhofen, Mark & Borsuk, Marcin & Baer, Moritz & Ranger, Nicola & Schoutens, Wim & Shrimali, Gireesh, 2025. "An asset-level analysis of financial tail risks under extreme weather events," LSE Research Online Documents on Economics 128395, London School of Economics and Political Science, LSE Library.
    15. Mohamad Khoirun Najib & Sri Nurdiati & Ardhasena Sopaheluwakan, 2022. "Multivariate fire risk models using copula regression in Kalimantan, Indonesia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(2), pages 1263-1283, September.
    16. Zhao, Xin & Barber, Stuart & Taylor, Charles C. & Milan, Zoka, 2018. "Classification tree methods for panel data using wavelet-transformed time series," Computational Statistics & Data Analysis, Elsevier, vol. 127(C), pages 204-216.
    17. Lu Lu & Sujit Ghosh, 2024. "Nonparametric Estimation of Conditional Copula Using Smoothed Checkerboard Bernstein Sieves," Mathematics, MDPI, vol. 12(8), pages 1-17, April.
    18. Kraus, Daniel & Czado, Claudia, 2017. "D-vine copula based quantile regression," Computational Statistics & Data Analysis, Elsevier, vol. 110(C), pages 1-18.
    19. Sahin, Özge & Czado, Claudia, 2022. "Vine copula mixture models and clustering for non-Gaussian data," Econometrics and Statistics, Elsevier, vol. 22(C), pages 136-158.
    20. Niemierko, Rochus & Töppel, Jannick & Tränkler, Timm, 2019. "A D-vine copula quantile regression approach for the prediction of residential heating energy consumption based on historical data," Applied Energy, Elsevier, vol. 233, pages 691-708.
    21. Hans Lööf & Maziar Sahamkhadam & Andreas Stephan, 2023. "Incorporating ESG into Optimal Stock Portfolios for the Global Timber & Forestry Industry," Journal of Forest Economics, now publishers, vol. 38(2), pages 133-157, June.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:40:y:2025:i:7:d:10.1007_s00180-024-01587-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.