IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v40y2025i7d10.1007_s00180-024-01573-3.html
   My bibliography  Save this article

kNN estimators for time series prediction: a functional partial linear single index model with missing responses and error-prone covariates

Author

Listed:
  • Shuyu Meng

    (Nanjing University of Science and Technology)

  • Zhensheng Huang

    (Nanjing University of Science and Technology)

  • Nengxiang Ling

    (Hefei University of Technology)

Abstract

This article investigates a functional partial linear single index model for strong $$\alpha$$ α -mixing functional time series data when the responses are missing not at random and the real covariates are observed with measurement errors. We first extend three insertion methods developed for regression models with missing responses in finite dimensions, namely imputation, semiparametric regression surrogate and inverse marginal probability weighted approaches, to functional scenarios when the responses are scalar. Then the attenuation correction method is employed to eliminate the impact of measurement error on model estimation of unknown parameter in linear component, after we completing the missingness of responses by using above insertion methods. Meanwhile, we combine the kNN approach with insertion and attenuation correction approaches to capture the local structure of functional time series data and provide the estimations of unknown operators in the estimation process. The asymptotic properties of unknown parameters in the model are established under some mild assumptions. Furthermore, we make a comparison of three insertion methods, the oracle method and the ignoring method in simulation study and electricity consumption data analysis. All results indicate that our methodology has good performance.

Suggested Citation

  • Shuyu Meng & Zhensheng Huang & Nengxiang Ling, 2025. "kNN estimators for time series prediction: a functional partial linear single index model with missing responses and error-prone covariates," Computational Statistics, Springer, vol. 40(7), pages 3359-3384, September.
  • Handle: RePEc:spr:compst:v:40:y:2025:i:7:d:10.1007_s00180-024-01573-3
    DOI: 10.1007/s00180-024-01573-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-024-01573-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-024-01573-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Jiang Du & Ruiyuan Cao & Eddy Kwessi & Zhongzhan Zhang, 2019. "Estimation for generalized partially functional linear additive regression model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 46(5), pages 914-925, April.
    2. Aneiros, Germán & Horová, Ivana & Hušková, Marie & Vieu, Philippe, 2022. "On functional data analysis and related topics," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    3. Ding, Hui & Liu, Yanghui & Xu, Wenchao & Zhang, Riquan, 2017. "A class of functional partially linear single-index models," Journal of Multivariate Analysis, Elsevier, vol. 161(C), pages 68-82.
    4. Febrero-Bande, Manuel & Galeano, Pedro & González-Manteiga, Wenceslao, 2019. "Estimation, imputation and prediction for the functional linear model with scalar response with responses missing at random," Computational Statistics & Data Analysis, Elsevier, vol. 131(C), pages 91-103.
    5. Wang, Qihua & Sun, Zhihua, 2007. "Estimation in partially linear models with missing responses at random," Journal of Multivariate Analysis, Elsevier, vol. 98(7), pages 1470-1493, August.
    6. Ping Yu & Ting Li & Zhongyi Zhu & Zhongzhan Zhang, 2019. "Composite quantile estimation in partial functional linear regression model with dependent errors," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 82(6), pages 633-656, August.
    7. Christophe Crambes & Chayma Daayeb & Ali Gannoun & Yousri Henchiri, 2023. "Functional linear model with partially observed covariate and missing values in the response," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 35(1), pages 172-197, January.
    8. Nengxiang Ling & Lilei Cheng & Philippe Vieu & Hui Ding, 2022. "Missing responses at random in functional single index model for time series data," Statistical Papers, Springer, vol. 63(2), pages 665-692, April.
    9. Kara, Lydia-Zaitri & Laksaci, Ali & Rachdi, Mustapha & Vieu, Philippe, 2017. "Data-driven kNN estimation in nonparametric functional data analysis," Journal of Multivariate Analysis, Elsevier, vol. 153(C), pages 176-188.
    10. Zhu, Hanbing & Zhang, Riquan & Yu, Zhou & Lian, Heng & Liu, Yanghui, 2019. "Estimation and testing for partially functional linear errors-in-variables models," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 296-314.
    11. Aneiros-Pérez, Germán & Vieu, Philippe, 2006. "Semi-functional partial linear regression," Statistics & Probability Letters, Elsevier, vol. 76(11), pages 1102-1110, June.
    12. Silvia Novo & Germán Aneiros & Philippe Vieu, 2021. "Sparse semiparametric regression when predictors are mixture of functional and high-dimensional variables," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(2), pages 481-504, June.
    13. Nengxiang Ling & Rui Kan & Philippe Vieu & Shuyu Meng, 2019. "Semi-functional partially linear regression model with responses missing at random," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 82(1), pages 39-70, January.
    14. Zhang, Shu & Jank, Wolfgang & Shmueli, Galit, 2010. "Real-time forecasting of online auctions via functional K-nearest neighbors," International Journal of Forecasting, Elsevier, vol. 26(4), pages 666-683, October.
    15. Gareth M. James, 2002. "Generalized linear models with functional predictors," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(3), pages 411-432, August.
    16. Shin, Hyejin & Lee, Myung Hee, 2012. "On prediction rate in partial functional linear regression," Journal of Multivariate Analysis, Elsevier, vol. 103(1), pages 93-106, January.
    17. Guochang Wang & Xiang-Nan Feng & Min Chen, 2016. "Functional Partial Linear Single-index Model," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(1), pages 261-274, March.
    18. Cardot, Herve & Crambes, Christophe & Kneip, Alois & Sarda, Pascal, 2007. "Smoothing splines estimators in functional linear regression with errors-in-variables," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 4832-4848, June.
    19. Aneiros-Pérez, Germán & Vieu, Philippe, 2008. "Nonparametric time series prediction: A semi-functional partial linear modeling," Journal of Multivariate Analysis, Elsevier, vol. 99(5), pages 834-857, May.
    20. Hua Liang & Suojin Wang & Raymond J. Carroll, 2007. "Partially linear models with missing response variables and error-prone covariates," Biometrika, Biometrika Trust, vol. 94(1), pages 185-198.
    21. Said Attaoui & Nengxiang Ling, 2016. "Asymptotic results of a nonparametric conditional cumulative distribution estimator in the single functional index modeling for time series data with applications," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 79(5), pages 485-511, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nengxiang Ling & Lilei Cheng & Philippe Vieu & Hui Ding, 2022. "Missing responses at random in functional single index model for time series data," Statistical Papers, Springer, vol. 63(2), pages 665-692, April.
    2. Boumahdi, Mounir & Ouassou, Idir & Rachdi, Mustapha, 2023. "Estimation in nonparametric functional-on-functional models with surrogate responses," Journal of Multivariate Analysis, Elsevier, vol. 198(C).
    3. Belli, Edoardo, 2022. "Smoothly adaptively centered ridge estimator," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    4. Silvia Novo & Germán Aneiros & Philippe Vieu, 2025. "Semi-functional partial linear regression with measurement error: an approach based on kNN estimation," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 34(1), pages 235-261, March.
    5. Liebl, Dominik & Walders, Fabian, 2019. "Parameter regimes in partial functional panel regression," Econometrics and Statistics, Elsevier, vol. 11(C), pages 105-115.
    6. Zhu, Hanbing & Zhang, Riquan & Yu, Zhou & Lian, Heng & Liu, Yanghui, 2019. "Estimation and testing for partially functional linear errors-in-variables models," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 296-314.
    7. Nengxiang Ling & Rui Kan & Philippe Vieu & Shuyu Meng, 2019. "Semi-functional partially linear regression model with responses missing at random," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 82(1), pages 39-70, January.
    8. Silvia Novo & Germán Aneiros & Philippe Vieu, 2021. "Sparse semiparametric regression when predictors are mixture of functional and high-dimensional variables," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(2), pages 481-504, June.
    9. Shuyu Meng & Zhensheng Huang, 2024. "Variable Selection in Semi-Functional Partially Linear Regression Models with Time Series Data," Mathematics, MDPI, vol. 12(17), pages 1-23, September.
    10. Dengke Xu & Jiang Du, 2020. "Nonparametric quantile regression estimation for functional data with responses missing at random," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(8), pages 977-990, November.
    11. Aneiros, Germán & Cao, Ricardo & Fraiman, Ricardo & Genest, Christian & Vieu, Philippe, 2019. "Recent advances in functional data analysis and high-dimensional statistics," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 3-9.
    12. Antonio Elías & Raúl Jiménez & J. E. Yukich, 2023. "Localization processes for functional data analysis," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 17(2), pages 485-517, June.
    13. Bin Yang & Min Chen & Tong Su & Jianjun Zhou, 2023. "Robust Estimation for Semi-Functional Linear Model with Autoregressive Errors," Mathematics, MDPI, vol. 11(2), pages 1-14, January.
    14. Usset, Joseph & Staicu, Ana-Maria & Maity, Arnab, 2016. "Interaction models for functional regression," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 317-329.
    15. Novo, Silvia & Aneiros, Germán & Vieu, Philippe, 2021. "A kNN procedure in semiparametric functional data analysis," Statistics & Probability Letters, Elsevier, vol. 171(C).
    16. Yu, Ping & Song, Xinyuan & Du, Jiang, 2024. "Composite expectile estimation in partial functional linear regression model," Journal of Multivariate Analysis, Elsevier, vol. 203(C).
    17. Elías, Antonio & Jiménez, Raúl & Shang, Han Lin, 2022. "On projection methods for functional time series forecasting," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    18. Majid Mojirsheibani & Timothy Reese, 2017. "Kernel regression estimation for incomplete data with applications," Statistical Papers, Springer, vol. 58(1), pages 185-209, March.
    19. Firouzeh Noghrehchi & Jakub Stoklosa & Spiridon Penev, 2020. "Multiple imputation and functional methods in the presence of measurement error and missingness in explanatory variables," Computational Statistics, Springer, vol. 35(3), pages 1291-1317, September.
    20. Shuzhi Zhu & Peixin Zhao, 2019. "Tests for the linear hypothesis in semi-functional partial linear regression models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 82(2), pages 125-148, March.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:40:y:2025:i:7:d:10.1007_s00180-024-01573-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.