IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v40y2025i6d10.1007_s00180-023-01418-5.html
   My bibliography  Save this article

Incremental singular value decomposition for some numerical aspects of multiblock redundancy analysis

Author

Listed:
  • Alba Martinez-Ruiz

    (Universidad Diego Portales)

  • Natale Carlo Lauro

    (Università degli Studi di Napoli Federico II)

Abstract

Simultaneously processing several large blocks of streaming data is a computationally expensive problem. Based on the incremental singular value decomposition algorithm, we propose a new procedure for calculating the factorization of the multiblock redundancy matrix $${{\textbf {M}}}$$ M , which makes the multiblock method more fast and efficient when analyzing large streaming data and high-dimensional dense matrices. The procedure transforms a big data problem into a small one by processing small high-dimensional matrices where variables are in rows. Numerical experiments illustrate the accuracy and performance of the incremental solution for analyzing streaming multiblock redundancy data. The experiments demonstrate that the incremental algorithm may decompose a large matrix with a 75% reduction in execution time. It is more efficient to first partition the matrix $${{\textbf {M}}}$$ M and then decompose it with the incremental algorithm than to decompose the entire matrix $${{\textbf {M}}}$$ M using the standard singular value decomposition algorithm.

Suggested Citation

  • Alba Martinez-Ruiz & Natale Carlo Lauro, 2025. "Incremental singular value decomposition for some numerical aspects of multiblock redundancy analysis," Computational Statistics, Springer, vol. 40(6), pages 3291-3319, July.
  • Handle: RePEc:spr:compst:v:40:y:2025:i:6:d:10.1007_s00180-023-01418-5
    DOI: 10.1007/s00180-023-01418-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-023-01418-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-023-01418-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. J. Johansson, 1981. "An extension of Wollenberg's redundancy analysis," Psychometrika, Springer;The Psychometric Society, vol. 46(1), pages 93-103, March.
    2. Izenman, Alan Julian, 1975. "Reduced-rank regression for the multivariate linear model," Journal of Multivariate Analysis, Elsevier, vol. 5(2), pages 248-264, June.
    3. P. Robert & Y. Escoufier, 1976. "A Unifying Tool for Linear Multivariate Statistical Methods: The RV‐Coefficient," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 25(3), pages 257-265, November.
    4. Jan Leeuw & Forrest Young & Yoshio Takane, 1976. "Additive structure in qualitative data: An alternating least squares method with optimal scaling features," Psychometrika, Springer;The Psychometric Society, vol. 41(4), pages 471-503, December.
    5. Forrest Young & Jan Leeuw & Yoshio Takane, 1976. "Regression with qualitative and quantitative variables: An alternating least squares method with optimal scaling features," Psychometrika, Springer;The Psychometric Society, vol. 41(4), pages 505-529, December.
    6. Paul Horst, 1961. "Relations amongm sets of measures," Psychometrika, Springer;The Psychometric Society, vol. 26(2), pages 129-149, June.
    7. Takane, Yoshio & Hwang, Heungsun, 2005. "An extended redundancy analysis and its applications to two practical examples," Computational Statistics & Data Analysis, Elsevier, vol. 49(3), pages 785-808, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. David Fernando Muñoz & Verónica Andrea González-López & Jürgen Symanzik, 2025. "Editorial on the special issue on the V Latin American conference on statistical computing," Computational Statistics, Springer, vol. 40(6), pages 2849-2856, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Takane, Yoshio, 2016. "My Early Interactions with Jan and Some of His Lost Papers," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 73(i07).
    2. Kadziński, MiŁosz & Greco, Salvatore & SŁowiński, Roman, 2012. "Extreme ranking analysis in robust ordinal regression," Omega, Elsevier, vol. 40(4), pages 488-501.
    3. van Rosmalen, J.M. & Koning, A.J. & Groenen, P.J.F., 2007. "Optimal Scaling of Interaction Effects in Generalized Linear Models," Econometric Institute Research Papers EI 2007-44, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    4. Ranjith Vijayakumar & Ji Yeh Choi & Eun Hwa Jung, 2022. "A Unified Neural Network Framework for Extended Redundancy Analysis," Psychometrika, Springer;The Psychometric Society, vol. 87(4), pages 1503-1528, December.
    5. Hye Won Suk & Heungsun Hwang, 2016. "Functional Generalized Structured Component Analysis," Psychometrika, Springer;The Psychometric Society, vol. 81(4), pages 940-968, December.
    6. Michio Yamamoto, 2012. "Clustering of functional data in a low-dimensional subspace," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 6(3), pages 219-247, October.
    7. Zhou, Lixing & Takane, Yoshio & Hwang, Heungsun, 2016. "Dynamic GSCANO (Generalized Structured Canonical Correlation Analysis) with applications to the analysis of effective connectivity in functional neuroimaging data," Computational Statistics & Data Analysis, Elsevier, vol. 101(C), pages 93-109.
    8. Seohee Park & Seongeun Kim & Ji Hoon Ryoo, 2020. "Latent Class Regression Utilizing Fuzzy Clusterwise Generalized Structured Component Analysis," Mathematics, MDPI, vol. 8(11), pages 1-16, November.
    9. John C. Gower & Sugnet Gardner-Lubbe & Niel J. Le Roux, 2018. "Interaction: Fisher’s Optimal Scores Revisited," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 23(1), pages 92-112, March.
    10. Maria Giovanna Onorati & Francesco D. d’Ovidio & Laura Antonucci, 2017. "Cultural displacement as a lever to global-ready student profiles: results from a longitudinal study on International Lifelong Learning Programs (LLP)," Quality & Quantity: International Journal of Methodology, Springer, vol. 51(2), pages 545-563, March.
    11. Heungsun Hwang & Moon-Ho Ho & Jonathan Lee, 2010. "Generalized Structured Component Analysis with Latent Interactions," Psychometrika, Springer;The Psychometric Society, vol. 75(2), pages 228-242, June.
    12. Bolton, Patrick & Li, Tao & Ravina, Enrichetta & Rosenthal, Howard, 2020. "Investor ideology," Journal of Financial Economics, Elsevier, vol. 137(2), pages 320-352.
    13. D'Ambra, Luigi & Amenta, Pietro & D'Ambra, Antonello & de Tibeiro, Jules S., 2021. "A study of the family service expenditures and the socio-demographic characteristics via fixed marginals correspondence analysis," Socio-Economic Planning Sciences, Elsevier, vol. 73(C).
    14. John Geer, 1984. "Linear relations amongk sets of variables," Psychometrika, Springer;The Psychometric Society, vol. 49(1), pages 79-94, March.
    15. Lukáš Sobíšek & Hana Řezanková, 2011. "Comparison of Dimensionality Reduction Methods Applied to Ordinal Variables [Srovnání metod pro redukci dimenzionality aplikovaných na ordinální proměnné]," Acta Oeconomica Pragensia, Prague University of Economics and Business, vol. 2011(1), pages 3-19.
    16. Florian Pargent & Florian Pfisterer & Janek Thomas & Bernd Bischl, 2022. "Regularized target encoding outperforms traditional methods in supervised machine learning with high cardinality features," Computational Statistics, Springer, vol. 37(5), pages 2671-2692, November.
    17. Heungsun Hwang & Hye Suk & Jang-Han Lee & D. Moskowitz & Jooseop Lim, 2012. "Functional Extended Redundancy Analysis," Psychometrika, Springer;The Psychometric Society, vol. 77(3), pages 524-542, July.
    18. John C. Gower & Niël J. Le Roux & Sugnet Gardner-Lubbe, 2022. "Properties of individual differences scaling and its interpretation," Statistical Papers, Springer, vol. 63(4), pages 1221-1245, August.
    19. Berry, Michael W. & Browne, Murray & Langville, Amy N. & Pauca, V. Paul & Plemmons, Robert J., 2007. "Algorithms and applications for approximate nonnegative matrix factorization," Computational Statistics & Data Analysis, Elsevier, vol. 52(1), pages 155-173, September.
    20. Takane, Yoshio & Hwang, Heungsun, 2005. "An extended redundancy analysis and its applications to two practical examples," Computational Statistics & Data Analysis, Elsevier, vol. 49(3), pages 785-808, June.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:40:y:2025:i:6:d:10.1007_s00180-023-01418-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.