IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v40y2025i6d10.1007_s00180-022-01297-2.html
   My bibliography  Save this article

Bayesian quantile regression models for heavy tailed bounded variables using the No-U-Turn sampler

Author

Listed:
  • Eduardo S. B. Oliveira

    (Universidade de São Paulo
    Universidade Federal de São Carlos)

  • Mário Castro

    (Universidade de São Paulo)

  • Cristian L. Bayes

    (Pontificia Universidad Católica del Perú)

  • Jorge L. Bazán

    (Universidade de São Paulo)

Abstract

When we are interested in knowing how covariates impact different levels of the response variable, quantile regression models can be very useful, with their practical use being benefited from the increasing of computational power. The use of bounded response variables is also very common when there are data containing percentages, rates, or proportions. In this work, with the generalized Gompertz distribution as the baseline distribution, we derive two new two-parameter distributions with bounded support, and new quantile parametric mixed regression models are proposed based on these distributions, which consider bounded response variables with heavy tails. Estimation of the parameters using the Bayesian approach is considered for both models, relying on the No-U-Turn sampler algorithm. The inferential methods can be implemented and then easily used for data analysis. Simulation studies with different quantiles ( $$q=0.1$$ q = 0.1 , $$q=0.5$$ q = 0.5 and $$q=0.9$$ q = 0.9 ) and sample sizes ( $$n=100$$ n = 100 , $$n=200$$ n = 200 , $$n=500$$ n = 500 , $$n=2000$$ n = 2000 , $$n=5000$$ n = 5000 ) were conducted for 100 replicas of simulated data for each combination of settings, in the (0, 1) and [0, 1), showing the good performance of the recovery of parameters for the proposed inferential methods and models, which were compared to Beta Rectangular and Kumaraswamy regression models. Furthermore, a dataset on extreme poverty is analyzed using the proposed regression models with fixed and mixed effects. The quantile parametric models proposed in this work are an alternative and complementary modeling tool for the analysis of bounded data.

Suggested Citation

  • Eduardo S. B. Oliveira & Mário Castro & Cristian L. Bayes & Jorge L. Bazán, 2025. "Bayesian quantile regression models for heavy tailed bounded variables using the No-U-Turn sampler," Computational Statistics, Springer, vol. 40(6), pages 3007-3040, July.
  • Handle: RePEc:spr:compst:v:40:y:2025:i:6:d:10.1007_s00180-022-01297-2
    DOI: 10.1007/s00180-022-01297-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-022-01297-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-022-01297-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Zhenguo Qiu & Peter X.‐K. Song & Ming Tan, 2008. "Simplex Mixed‐Effects Models for Longitudinal Proportional Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 35(4), pages 577-596, December.
    2. Harris, Mark N. & Zhao, Xueyan, 2007. "A zero-inflated ordered probit model, with an application to modelling tobacco consumption," Journal of Econometrics, Elsevier, vol. 141(2), pages 1073-1099, December.
    3. Ospina, Raydonal & Ferrari, Silvia L.P., 2012. "A general class of zero-or-one inflated beta regression models," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1609-1623.
    4. Silvia Ferrari & Francisco Cribari-Neto, 2004. "Beta Regression for Modelling Rates and Proportions," Journal of Applied Statistics, Taylor & Francis Journals, vol. 31(7), pages 799-815.
    5. Figueroa-Zúñiga, Jorge I. & Arellano-Valle, Reinaldo B. & Ferrari, Silvia L.P., 2013. "Mixed beta regression: A Bayesian perspective," Computational Statistics & Data Analysis, Elsevier, vol. 61(C), pages 137-147.
    6. M. E. Ghitany & J. Mazucheli & A. F. B. Menezes & F. Alqallaf, 2019. "The unit-inverse Gaussian distribution: A new alternative to two-parameter distributions on the unit interval," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 48(14), pages 3423-3438, July.
    7. Jayabrata Biswas & Kiranmoy Das, 2021. "A Bayesian quantile regression approach to multivariate semi-continuous longitudinal data," Computational Statistics, Springer, vol. 36(1), pages 241-260, March.
    8. Adam Lenart, 2014. "The moments of the Gompertz distribution and maximum likelihood estimation of its parameters," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2014(3), pages 255-277.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. David Fernando Muñoz & Verónica Andrea González-López & Jürgen Symanzik, 2025. "Editorial on the special issue on the V Latin American conference on statistical computing," Computational Statistics, Springer, vol. 40(6), pages 2849-2856, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Phillip Li, 2018. "Efficient MCMC estimation of inflated beta regression models," Computational Statistics, Springer, vol. 33(1), pages 127-158, March.
    2. Acocella, Angela & Caplice, Chris & Sheffi, Yossi, 2020. "Elephants or goldfish?: An empirical analysis of carrier reciprocity in dynamic freight markets," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    3. Francisco Cribari-Neto & Sadraque E.F. Lucena, 2015. "Nonnested hypothesis testing in the class of varying dispersion beta regressions," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(5), pages 967-985, May.
    4. Ricardo Rasmussen Petterle & Wagner Hugo Bonat & Cassius Tadeu Scarpin, 2019. "Quasi-beta Longitudinal Regression Model Applied to Water Quality Index Data," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(2), pages 346-368, June.
    5. Zhao, Weihua & Lian, Heng & Zhang, Riquan & Lai, Peng, 2016. "Estimation and variable selection for proportional response data with partially linear single-index models," Computational Statistics & Data Analysis, Elsevier, vol. 96(C), pages 40-56.
    6. Guillermo Martínez-Flórez & Artur J. Lemonte & Germán Moreno-Arenas & Roger Tovar-Falón, 2022. "The Bivariate Unit-Sinh-Normal Distribution and Its Related Regression Model," Mathematics, MDPI, vol. 10(17), pages 1-26, August.
    7. Cristine Rauber & Francisco Cribari-Neto & Fábio M. Bayer, 2020. "Improved testing inferences for beta regressions with parametric mean link function," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(4), pages 687-717, December.
    8. Reboul, E. & Guérin, I. & Nordman, C.J., 2021. "The gender of debt and credit: Insights from rural Tamil Nadu," World Development, Elsevier, vol. 142(C).
    9. Rashad A. R. Bantan & Christophe Chesneau & Farrukh Jamal & Mohammed Elgarhy & Muhammad H. Tahir & Aqib Ali & Muhammad Zubair & Sania Anam, 2020. "Some New Facts about the Unit-Rayleigh Distribution with Applications," Mathematics, MDPI, vol. 8(11), pages 1-23, November.
    10. Guillermo Martínez-Flórez & Roger Tovar-Falón & Carlos Barrera-Causil, 2022. "Inflated Unit-Birnbaum-Saunders Distribution," Mathematics, MDPI, vol. 10(4), pages 1-14, February.
    11. Guillermo Martínez-Flórez & Heleno Bolfarine & Héctor Gómez, 2015. "Doubly censored power-normal regression models with inflation," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(2), pages 265-286, June.
    12. Kong, Hui & Zhang, Xiaohu & Zhao, Jinhua, 2020. "How does ridesourcing substitute for public transit? A geospatial perspective in Chengdu, China," Journal of Transport Geography, Elsevier, vol. 86(C).
    13. Patrícia L. Espinheira & Alisson Oliveira Silva, 2020. "Residual and influence analysis to a general class of simplex regression," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(2), pages 523-552, June.
    14. Terezinha K. A. Ribeiro & Silvia L. P. Ferrari, 2023. "Robust estimation in beta regression via maximum L $$_q$$ q -likelihood," Statistical Papers, Springer, vol. 64(1), pages 321-353, February.
    15. Yuri S. Maluf & Silvia L. P. Ferrari & Francisco F. Queiroz, 2025. "Robust beta regression through the logit transformation," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 88(1), pages 61-81, January.
    16. Admassu N. Lamu, 2020. "Does linear equating improve prediction in mapping? Crosswalking MacNew onto EQ-5D-5L value sets," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 21(6), pages 903-915, August.
    17. Barbagli, Matteo & François, Pascal & Gauthier, Geneviève & Vrins, Frédéric, 2025. "The role of CDS spreads in explaining bond recovery rates," Journal of Banking & Finance, Elsevier, vol. 174(C).
    18. Fábio M. Bayer & Francisco Cribari‐Neto & Jéssica Santos, 2021. "Inflated Kumaraswamy regressions with application to water supply and sanitation in Brazil," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 75(4), pages 453-481, November.
    19. Luiz M A Lima-Filho & Tarciana Liberal Pereira & Tatiene C Souza & Fábio M Bayer, 2020. "Process monitoring using inflated beta regression control chart," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-20, July.
    20. Carolina Costa Mota Paraíba & Natalia Bochkina & Carlos Alberto Ribeiro Diniz, 2018. "Bayesian truncated beta nonlinear mixed-effects models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 45(2), pages 320-346, January.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:40:y:2025:i:6:d:10.1007_s00180-022-01297-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.