IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v39y2024i4d10.1007_s00180-024-01475-4.html
   My bibliography  Save this article

Automatic piecewise linear regression

Author

Listed:
  • Mathias Ottenbreit

    (Von Ottenbreit Data Science)

  • Riccardo Bin

    (University of Oslo)

Abstract

Regression modelling often presents a trade-off between predictiveness and interpretability. Highly predictive and popular tree-based algorithms such as Random Forest and boosted trees predict very well the outcome of new observations, but the effect of the predictors on the result is hard to interpret. Highly interpretable algorithms like linear effect-based boosting and MARS, on the other hand, are typically less predictive. Here we propose a novel regression algorithm, automatic piecewise linear regression (APLR), that combines the predictiveness of a boosting algorithm with the interpretability of a MARS model. In addition, as a boosting algorithm, it automatically handles variable selection, and, as a MARS-based approach, it takes into account non-linear relationships and possible interaction terms. We show on simulated and real data examples how APLR’s performance is comparable to that of the top-performing approaches in terms of prediction, while offering an easy way to interpret the results. APLR has been implemented in C++ and wrapped in a Python package as a Scikit-learn compatible estimator.

Suggested Citation

  • Mathias Ottenbreit & Riccardo Bin, 2024. "Automatic piecewise linear regression," Computational Statistics, Springer, vol. 39(4), pages 1867-1907, June.
  • Handle: RePEc:spr:compst:v:39:y:2024:i:4:d:10.1007_s00180-024-01475-4
    DOI: 10.1007/s00180-024-01475-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-024-01475-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-024-01475-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:39:y:2024:i:4:d:10.1007_s00180-024-01475-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.