IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v34y2019i2d10.1007_s00180-019-00867-1.html
   My bibliography  Save this article

Classification trees with soft splits optimized for ranking

Author

Listed:
  • Jakub Dvořák

    (Academy of Sciences of the Czech Republic)

Abstract

We consider softening of splits in classification trees generated from multivariate numerical data. This methodology improves the quality of the ranking of the test cases measured by the AUC. Several ways to determine softening parameters are introduced and compared including softening algorithm present in the standard methods C4.5 and C5.0. In the first part of the paper, a few settings of softening determined only from ranges of training data in the tree branches are explored. The trees softened with these settings are used to study the effect of using the Laplace correction together with soft splits. In a later part we introduce methods which employ maximization of the classifier’s performance on the training set over the domain of the softening parameters. The non-linear optimization algorithm Nelder–Mead is used and various target functions are considered. The target function evaluating the AUC on the training set is compared with functions summing over training cases some transformation of the error of score. Several data sets from the UCI repository are used in experiments.

Suggested Citation

  • Jakub Dvořák, 2019. "Classification trees with soft splits optimized for ranking," Computational Statistics, Springer, vol. 34(2), pages 763-786, June.
  • Handle: RePEc:spr:compst:v:34:y:2019:i:2:d:10.1007_s00180-019-00867-1
    DOI: 10.1007/s00180-019-00867-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-019-00867-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-019-00867-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:34:y:2019:i:2:d:10.1007_s00180-019-00867-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.