IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v33y2018i4d10.1007_s00180-017-0790-7.html
   My bibliography  Save this article

A correction of approximations used in sensitivity study of principal component analysis

Author

Listed:
  • Jacques Bénasséni

    (Univ Rennes, CNRS, IRMAR - UMR 6625)

Abstract

Principal component analysis is a method of dimensionality reduction based on the eigensystem of the covariance matrix of a set of multivariate observations. Analyzing the effects of some specific observations on this eigensystem is therefore of particular importance in the sensitivity study of the results. In this framework, approximations for the perturbed eigenvalues and eigenvectors when deleting one or several observations are useful from a computational standpoint. Indeed, they allow one to evaluate the effects of these observations without having to recompute the exact perturbed eigenvalues and eigenvectors. However, it turns out that some approximations which have been suggested are based on an incorrect application of matrix perturbation theory. The aim of this short note is to provide the correct formulations which are illustrated with a numerical study.

Suggested Citation

  • Jacques Bénasséni, 2018. "A correction of approximations used in sensitivity study of principal component analysis," Computational Statistics, Springer, vol. 33(4), pages 1939-1955, December.
  • Handle: RePEc:spr:compst:v:33:y:2018:i:4:d:10.1007_s00180-017-0790-7
    DOI: 10.1007/s00180-017-0790-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-017-0790-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-017-0790-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Prendergast, Luke A. & Li Wai Suen, Connie, 2011. "A new and practical influence measure for subsets of covariance matrix sample principal components with applications to high dimensional datasets," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 752-764, January.
    2. Wang, Song-Gui & Nyquist, Hans, 1991. "Effects on the eigenstructure of a data matrix when deleting an observation," Computational Statistics & Data Analysis, Elsevier, vol. 11(2), pages 179-188, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Prendergast, Luke A. & Smith, Jodie A., 2022. "Influence functions for linear discriminant analysis: Sensitivity analysis and efficient influence diagnostics," Journal of Multivariate Analysis, Elsevier, vol. 190(C).
    2. Wenxing Guo & Xiaohui Liu & Shangli Zhang, 2016. "The principal correlation components estimator and its optimality," Statistical Papers, Springer, vol. 57(3), pages 755-779, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:33:y:2018:i:4:d:10.1007_s00180-017-0790-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.