IDEAS home Printed from https://ideas.repec.org/a/spr/comgts/v3y2006i1p3-27.html
   My bibliography  Save this article

Computational aspects of minimizing conditional value-at-risk

Author

Listed:
  • Alexandra Künzi-Bay
  • János Mayer

Abstract

We consider optimization problems for minimizing conditional value-at-risk (CVaR) from a computational point of view, with an emphasis on financial applications. As a general solution approach, we suggest to reformulate these CVaR optimization problems as two-stage recourse problems of stochastic programming. Specializing the L-shaped method leads to a new algorithm for minimizing conditional value-at-risk. We implemented the algorithm as the solver CVaRMin. For illustrating the performance of this algorithm, we present some comparative computational results with two kinds of test problems. Firstly, we consider portfolio optimization problems with 5 random variables. Such problems involving conditional value at risk play an important role in financial risk management. Therefore, besides testing the performance of the proposed algorithm, we also present computational results of interest in finance. Secondly, with the explicit aim of testing algorithm performance, we also present comparative computational results with randomly generated test problems involving 50 random variables. In all our tests, the experimental solver, based on the new approach, outperformed by at least one order of magnitude all general-purpose solvers, with an accuracy of solution being in the same range as that with the LP solvers. Copyright Springer-Verlag Berlin/Heidelberg 2006

Suggested Citation

  • Alexandra Künzi-Bay & János Mayer, 2006. "Computational aspects of minimizing conditional value-at-risk," Computational Management Science, Springer, vol. 3(1), pages 3-27, January.
  • Handle: RePEc:spr:comgts:v:3:y:2006:i:1:p:3-27
    DOI: 10.1007/s10287-005-0042-0
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10287-005-0042-0
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10287-005-0042-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:comgts:v:3:y:2006:i:1:p:3-27. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.